It has a closed form
$$ \int_{0}^{\infty} \exp(i x^{1/\alpha}) \, \Bbb{d}x = \Gamma(1+\alpha)e^{i\pi\alpha/2}, \quad \alpha \in (0, 1). $$
Applying the substitution $x \mapsto x^{\alpha}$, we can write
$$ I(\alpha) := \int_{0}^{\infty} \exp(ix^{1/\alpha}) \, \Bbb{d}x = \int_{0}^{\infty} \alpha x^{\alpha-1} e^{ix} \, \Bbb{d}x, \tag{1} $$
which is much easier to work with.
Complex-analytic method. Rotate the contour of $\text{(1)}$ by $90^{\circ}$ degrees to have
$$ I(\alpha) = \alpha \int_{0}^{i\infty} z^{\alpha-1} e^{iz} \, dz. $$
This is a standard technique, and we can justify this by applying the Cauchy integration formula to a quadrant contour and then utilizing the Jordan's lemma.
Then by the substitution $z \mapsto ix$, we have
$$ I(\alpha) = \alpha i^{\alpha} \int_{0}^{\infty} x^{\alpha-1}e^{-x} \, dx = \Gamma(1+\alpha)i^{\alpha}. $$
Real-analytic method. Since the right-hand side of $\text{(1)}$ exists as improper-integral sense, it follows from the integral version of the Abel's theorem that
$$ I(\alpha) = \int_{0}^{\infty} \alpha x^{\alpha-1} e^{ix} \, \Bbb{d}x = \lim_{\epsilon \downarrow 0} \int_{0}^{\infty} \alpha x^{\alpha-1} e^{ix}e^{-\epsilon x} \, \Bbb{d}x. \tag{2} $$
Using the formula
$$ \frac{\Gamma(1-\alpha)}{x^{1-\alpha}} = \int_{0}^{\infty} u^{-\alpha}e^{-xu} \, \Bbb{d}u $$
and the Fubini's theorem, we can write
\begin{align*}
\int_{0}^{\infty} \alpha x^{\alpha-1} e^{ix}e^{-\epsilon x} \, \Bbb{d}x
&= \frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \left(\int_{0}^{\infty} u^{-\alpha}e^{-xu} \, \Bbb{d}u\right) e^{-(\epsilon-i) x} \, \Bbb{d}x \\
&= \frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \left(\int_{0}^{\infty} e^{-(u+\epsilon-i) x} \, \Bbb{d}x\right) u^{-\alpha} \, \Bbb{d}u \\
&= \frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \frac{u^{-\alpha}}{u+\epsilon-i} \, \Bbb{d}u.
\end{align*}
(Notice that we cannot apply the Fubini's theorem directly when $\epsilon = 0$ due to integrability issue. This explains why we are considering a regularized version $\text{(2)}$ of the original integral.)
Taking $\epsilon \downarrow 0$, we have
$$ I(\alpha) = \frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \frac{u^{1-\alpha} + iu^{-\alpha}}{u^2+1} \, \Bbb{d}u. \tag{3} $$
Using the beta function identity, the last integral in $\text{(3)}$ can be computed explicitly as
$$ I(\alpha) = \frac{\alpha}{\Gamma(1-\alpha)} \cdot \frac{\pi}{2}\left( \frac{1}{\sin(\pi\alpha/2)} + \frac{i}{\cos(\pi\alpha/2)} \right). $$
Finally, from the Euler's reflection formula and the sine double-angle formula we have
$$ I(\alpha) = \Gamma(1+\alpha) e^{i\pi\alpha/2}. $$