I am trying to prove the existence of $t_{0}$ such that $$\int_{0}^{t}\frac{\sin{x}}{\sqrt{x}}dx+\sin{t}>0 $$ for all $t\geq t_{0}$.
Numerical experiments shows this (see the figure).
The first thing that may come to mind is to show the existence of $t_{0}$ such that $$\int_{0}^{t}\frac{\sin{x}}{\sqrt{x}}dx>1 $$ when $t\geq t_{0}$