Suppose $a_n>0$ for $n\in \mathbb{N}$. Prove that $$\prod_{n=1}^\infty (1+a_n)$$ converges if and only if $\sum_{n=1}^\infty a_n<\infty$.
Hint: Use the fact that for any $a>0$, $$a>\ln(1+a)>\frac{a}{1+a}.$$
Assume that $\sum_{n=1}^\infty a_n<\infty$. By the hint, $$\infty> \sum_{n=1}^\infty a_n>\sum_{n=1}^\infty \ln(1+a_n)>\sum_{n=1}^\infty \frac{a_n}{1+a_n}.$$ So $$\infty>\sum_{n=1}^\infty \ln(1+a_n).$$ By the limit comparison test $$\infty> \sum_{n=1}^\infty (1+a_n).$$ This implies that $$\prod_{n=1}^\infty (1+a_n)$$ converges.
How would I go from the other direction?