3

Suppose $a_n>0$ for $n\in \mathbb{N}$. Prove that $$\prod_{n=1}^\infty (1+a_n)$$ converges if and only if $\sum_{n=1}^\infty a_n<\infty$.

Hint: Use the fact that for any $a>0$, $$a>\ln(1+a)>\frac{a}{1+a}.$$

Assume that $\sum_{n=1}^\infty a_n<\infty$. By the hint, $$\infty> \sum_{n=1}^\infty a_n>\sum_{n=1}^\infty \ln(1+a_n)>\sum_{n=1}^\infty \frac{a_n}{1+a_n}.$$ So $$\infty>\sum_{n=1}^\infty \ln(1+a_n).$$ By the limit comparison test $$\infty> \sum_{n=1}^\infty (1+a_n).$$ This implies that $$\prod_{n=1}^\infty (1+a_n)$$ converges.

How would I go from the other direction?

1 Answers1

1

On the other direction, notice that necessarily $a_n\to0$ because $\prod_{i=1}^\infty (1+a_n)$ converges. Hence, $$ \frac12<\frac1{1+a_n}<2 $$ for all sufficiently large $n$. So, by comparison, $\sum_{i=1}^\infty a_n$ converges if and only if $\sum_{i=1}^\infty a_n/(1+a_n)$ does (and the last one converges because $\prod_{i=1}^\infty (1+a_n)$ does).

John B
  • 16,854