2

For $a_n$ positive sequence.

I think I can prove one direction, but not both.

Yoav R.
  • 199
  • 7

1 Answers1

5

Since $\frac{a_n}{1+a_n}<a_n$, thus $\sum_{n=1}^\infty a_n<\infty$ implies $\sum_{n=1}^\infty \frac{a_n}{1+a_n}<\infty$. On the other hand, let $\sum_{n=1}^\infty \frac{a_n}{1+a_n}<\infty$. Then $\lim_{n\to\infty}\frac{a_n}{1+a_n}=0$ and hence $\lim_{n\to\infty}a_n=0$. So there is $N>0$ such that $a_n<1$ when $n\ge N$. From this, we have $$ \frac{1}{2}a_n\le\frac{a_n}{1+a_n}, \text{ for }n\ge N $$ which implies $\sum_{n=1}^\infty a_n<\infty$.

xpaul
  • 44,000
  • Can't figure out this thing you wrote: "Then $\lim_{n\to\infty}\frac{a_n}{1+a_n}=0$ and hence $\lim_{n\to\infty}a_n=0$" – Yoav R. May 17 '15 at 13:12
  • @YoavR., you can prove this fact that $\lim_{n\to\infty}\frac{a_n}{1+a_n}=0$ implies $\lim_{n\to\infty}a_n=0$. – xpaul May 17 '15 at 13:20
  • can you show me a proof(or even intuition)? – Yoav R. May 17 '15 at 13:22
  • @YoavR., ok. Clearly if $\lim_{n\to\infty}\frac{a_n}{1+a_n}=0$, then ${a_n}$ is bounded, say, $a_n\le M$ for all $n\ge 1$. Thus $\frac{1}{1+M}a_n\le\frac{a_n}{1+a_n}$. Thus $\lim_{n\to\infty}\frac{a_n}{1+a_n}=0$ implies $\lim_{n\to\infty}a_n=0$ – xpaul May 17 '15 at 13:40