For $a_n$ positive sequence.
I think I can prove one direction, but not both.
For $a_n$ positive sequence.
I think I can prove one direction, but not both.
Since $\frac{a_n}{1+a_n}<a_n$, thus $\sum_{n=1}^\infty a_n<\infty$ implies $\sum_{n=1}^\infty \frac{a_n}{1+a_n}<\infty$. On the other hand, let $\sum_{n=1}^\infty \frac{a_n}{1+a_n}<\infty$. Then $\lim_{n\to\infty}\frac{a_n}{1+a_n}=0$ and hence $\lim_{n\to\infty}a_n=0$. So there is $N>0$ such that $a_n<1$ when $n\ge N$. From this, we have $$ \frac{1}{2}a_n\le\frac{a_n}{1+a_n}, \text{ for }n\ge N $$ which implies $\sum_{n=1}^\infty a_n<\infty$.