Suppose $1>a_n>0$ for $n\in \mathbb{N}$. Prove that $$\prod_{n=1}^\infty (1-a_n)=0$$ converges if and only if $\sum_{n=1}^\infty a_n=\infty$.
Proof of $\Rightarrow$: Assume that $\prod_{n=1}^\infty (1-a_n)=0$ converges. Well then at some $i$, $1-a_i=0$, which implies $a_i=1$. Knowing this if we were to $$\sum_{n=1}^\infty a_n=\underbrace{1+\dots+1}_{\infty \text{ times}}=1\cdot \infty=\infty.$$
Proof of $\Leftarrow$: Assume $\sum_{n=1}^\infty a_n=\infty$. How would I do this direction?