1 Answers1

2

If $a_n$ does not approach $0$ as $n \to \infty$, then $\displaystyle\sum_{n = 1}^{\infty}a_n$ diverges. So, assume $\displaystyle\lim_{n \to \infty}a_n = 0$

If $\displaystyle\prod_{n = 1}^{\infty}(1-a_n) = 0$, then $\displaystyle\sum_{n = 1}^{\infty}-\ln(1-a_n) = \infty$. Now, use the limit comparison test.

JimmyK4542
  • 54,331