$\text {Let } y=\dfrac{1}{1+x^{m}}, \textrm{then } x=\left(\dfrac{1}{y}-1\right)^{\frac{1}{m}} \textrm{ and } d x=\dfrac{1}{m} \left(\dfrac{1}{y}-1\right)^{\frac{1}{m-1}}\left(\dfrac{d y}{-y^{2}}\right).$
Simplifying gives
$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{n}}{\left(1+x^{m}\right)^{\alpha}} &=\frac{1}{m} \int_{0}^{1} y^{\left(\alpha-\frac{n+1}{m}\right)-1}(1-y)^{\frac{n+1}{m}-1} d y \\
&=\frac{1}{m} B\left(\alpha-\frac{n+1}{m}, \frac{n+1}{m}\right) \\
&=\frac{1}{m} \frac{\Gamma\left(\alpha-\frac{n+1}{m}\right) \Gamma\left(\frac{n+1}{m}\right)}{\Gamma(\alpha)}
\end{aligned}
$$
Using the property of Gamma Function: $\Gamma(z+1)=z \Gamma(z)$ repeatedly yields
$$
\begin{aligned}
\Gamma\left(\alpha-\frac{n+1}{m}\right) &=\left(\alpha-1-\frac{n+1}{m}\right) \Gamma\left(\alpha-1-\frac{n+1}{m}\right) \\
& \qquad\qquad \vdots \\
&=\prod_{k=1}^{\alpha -1}\left(\alpha-k-\frac{n+1}{m}\right) \Gamma\left(1-\frac{n+1}{m}\right)
\end{aligned}
$$
Using Euler’s Reflection Theorem: $
\quad \Gamma(z) \Gamma(1-z)=\pi \csc (\pi z) \textrm{ for } z\notin Z
$ gives
Case 1: When $n=1$,
$$\int_{0}^{\infty} \frac{x^{n}}{1+x^{m}}= \frac{\pi}{m} \csc \frac{(n+1) \pi}{m} $$
Case 2: When $n\geq 2$,
$$
\begin{aligned} \int_{0}^{\infty} \frac{x^{n}}{\left(1+x^{m}\right)^{\alpha}}&=\frac{1}{m(\alpha-1) !} \left[\prod_{k=1}^{\alpha-1}\left(\alpha-k-\frac{n+1}{m}\right) \right]\Gamma\left(1-\frac{n+1}{m}\right) \Gamma\left(\frac{n+1}{m}\right)\\&=\boxed{ \frac{\pi}{m(\alpha-1) !} \csc\frac{(n+1) \pi}{m}\prod_{k=1}^{\alpha-1}\left(\alpha-k-\frac{n+1}{m}\right)} \end{aligned}
$$
For the more general integral $\displaystyle \int_{0}^{\infty} \dfrac{x^{n}}{\left(a+b x^{m}\right)^{\alpha}} d x$, we let $\displaystyle u=\sqrt[m]{\frac{b}{a}} x$ and get $$
\begin{aligned}
\int_{0}^{\infty} \dfrac{x^{n}}{\left(a+b x^{m}\right)^{\alpha}} d x &=\int_{0}^{\infty} \frac{\left(\frac{a}{b}\right)^{\frac{n}{m}} u^{n}}{\left(a+a u^{m}\right)^{\alpha}} \left(\frac{a}{b}\right)^{\frac{1}{m}} d u\\
&=\left(\frac{a}{b}\right)^{\frac{n+1}{m}} \cdot a^{-\alpha} \int_{0}^{\infty} \frac{u^{n}}{\left(1+u^{m}\right)^{\alpha}} d u \\
&=\boxed{\frac{a^{\frac{n+1}{m}-\alpha}\pi}{b^{\frac{n+1}{m}} m(\alpha-1) !} \csc\frac{(n+1) \pi}{m}\prod_{k=1}^{\alpha-1}\left(\alpha-k-\frac{n+1}{m}\right)}
\end{aligned}
$$