Write,
$$I=\displaystyle \int_0^\infty \frac{\ln x}{x^2+4}\mathrm{d} x$$
Notice
\begin{eqnarray}
I &= \int_0^1 \frac{\ln x}{x^2+4}\mathrm{d} x + \int_1^{\infty} \frac{\ln x}{x^2+4}\mathrm{d} x \\
&= G + H
\end{eqnarray}
Now
\begin{eqnarray}
G &= \int_0^1 \frac{\ln x}{x^2+4}\mathrm{d} x \\
&= \frac{1}{4} \int_0^1 \frac{\ln x}{\left(\frac{x}{2}\right)^2+1}\mathrm{d}x \\
&= \frac{1}{4} \int_0^1 \frac{\ln x - \ln 2+ \ln 2}{\left(\frac{x}{2}\right)^2+1}\mathrm{d}x \\
&= \frac{1}{4} \int_0^1 \frac{\ln x - \ln 2}{\left(\frac{x}{2}\right)^2+1}\mathrm{d}x + \frac{\ln 2}{4} \int_0^1 \frac{1}{\left(\frac{x}{2}\right)^2+1}\mathrm{d}x \\
&= G_1 + G_2
\end{eqnarray}
Further
\begin{eqnarray}
G_1 &= \int_0^1 \frac{\ln(x/2)dx}{\left(\frac{x}{2}\right)^2+1}
\end{eqnarray}
Let $x/2 = y$ thus
\begin{eqnarray}
G_1 &= \frac{1}{4}\int_0^1 \frac{\ln y}{y^2+1}\mathrm{d}y \\
&= -\frac{1}{4}\int_1^\infty \frac{\ln u}{u^2+1}\mathrm{d}u
\end{eqnarray}
Where the last step was achieved by writing $u=1/y$.
Meanwhile back at the ranch,
\begin{eqnarray}
G_2 &= \frac{\ln 2}{4}\int_0^1 \frac{1}{1+u^2}\mathrm{d}u \\
&= \frac{\ln 2}{2} \tan^{-1}\left(\frac{1}{2}\right)
\end{eqnarray}
Since I have many dummy variables, the result for $G_1 = -H$ and thus the final answer is $G_2$ above for the initial $I$. Hence
$$\displaystyle \int_0^\infty \frac{\ln x}{x^2+4}\mathrm{d} x = \frac{\ln 2}{2} \tan^{-1}\left(\frac{1}{2}\right)$$