I'm wondering if I have a sufficient proof of the following:
If $(a_n)$ is a sequence such that $\lim_{n \rightarrow \infty}a_n=A$, then $\lim_{n \rightarrow \infty}\frac{a_1+...+a_n}{n}=A$.
My approach:
For all $\varepsilon > 0$, there exists $N$ such that for all $k>N$, $|a_k -A|<\varepsilon$. So we can break the limit up as follows $$\lim_{n\rightarrow \infty} \frac{a_1+...+a_k}{n} + \lim_{n \rightarrow \infty}\frac{a_{k+1}+...+a_n}{n} \overset{\epsilon \rightarrow 0}{=} 0 + \lim_{n \rightarrow \infty}\frac{nA}{n}=A$$
Is this on the right track, or am I missing something about breaking up the limit in the way I have?