Using the Stolz-Cesaro Theorem, we have
$$\lim_{n\to \infty}\frac{\sum_{k=1}^n\left(\sum_{j=1}^ka_j\right)}{n}=\lim_{n\to \infty}\sum_{j=1}^{n+1}a_j=S$$
If one is unfamiliar with Stolz-Cesaro, then on can proceed as follows. Let $\epsilon>0$ be given. Then, choose and fix $N$ so large that $|s_k-S|<\epsilon/2$ whenever $k>N$..
Thus, we can write
$$\begin{align}
\left|\frac{\sum_{k=1}^n s_k}{n}-S\right|&=\left|\frac1n \sum_{k=1}^n (s_k-S)\right|\\\\
&\le \frac1n \sum_{k=1}^N |s_k-S|+\frac1n \sum_{k=N+1}^n |s_k-S|\\\\
&\le \frac1n \sum_{k=1}^N |s_k-S| +\left(1-\frac{N}{n}\right)\frac{\epsilon}{2}\\\\
&\le \frac1n \sum_{k=1}^N |s_k-S| +\frac{\epsilon}{2}\\\\
&\le \frac{\epsilon}{2}+\frac{\epsilon}{2}\\\\
&=\epsilon
\end{align}$$
whenever $n>\max\left(N+1,\frac{2\sum_{k=1}^N |s_k-S|}{\epsilon}\right)$
And we are done!