Here's a version of the proof that maybe looks a little longer than other versions, but which has the advantage that each step is more or less obvious:
First, we introduce the notation $$\sigma_n=\frac{a_1+\dots+a_n}{n}.$$
Lemma If there exists $N$ so that $a_n=0$ for all $n>N$ then $\lim\sigma_n=0$.
Proof: $$|\sigma_n|\le\frac{|a_1+\dots+a_N|}{n}.$$QED
Proposition If $\lim a_n=0$ then $\lim\sigma_n=0$.
Proof: Let $\epsilon>0$. Choose $N$ so $|a_n|<\epsilon$ for all $n>N$. Define $$a_n'=\begin{cases}0,&(n\le N),
\\a_n,&(n>N).\end{cases}$$The lemma shows that $$\lim(\sigma_n-\sigma_n')=0$$(using what should be obvious notation). But $|a_n'|\le\epsilon$ for every $n$, so $|\sigma_n'|<\epsilon$ for every $n$, hence $$\limsup|\sigma_n'|\le\epsilon.$$Since $\sigma_n-\sigma_n'\to0$ this shows that $\limsup|\sigma_n|\le\epsilon$, and since this holds for every $\epsilon>0$ it follows that $\limsup|\sigma_n|=0$, hence $\lim\sigma_n=0$. QED.
Theorem If $\lim a_n=L$ then $\lim \sigma_n=L$.
Proof: Let $a_n'=a_n-L$. Then the lemma shows that $\lim\sigma_n'=0$, since $\lim a_n'=0$. But $\sigma_n=\sigma_n'+L$, hence $\lim \sigma_n=L$. QED