0

I need help with this proof. I am stuck on this question and don't know how to do it:

Prove that:

$$ \forall n \in \mathbb{N}, \sum\limits_{i=2}^{2^n} \frac{1}{i} \geq \frac{n}{2}$$

Johnny
  • 1

1 Answers1

3

Hint: Show that the following is true:

$$\underbrace{\frac12}_{\geq \frac12} + \underbrace{\frac13+\frac14}_{\geq \frac12} + \underbrace{\frac15+\frac16+\frac17+\frac18}_{\geq \frac12}+\ldots + \underbrace{\frac1{2^{n-1}+1}+\ldots+\frac1{2^n}}_{\geq \frac12}$$

Théophile
  • 24,627