This type of integrals can be solved to give the general result:
$$\int_0^{\pi /2}\sin^m\theta\cos^n\theta d \theta=\begin{cases} \frac{(m-1)!!(n-1)!!}{(m+n)!!} \text{ if any exponent is odd}\cr \frac{(m-1)!!(n-1)!!}{(m+n)!!}\frac{\pi} 2 \text{ both even exponents} \end{cases}$$
We first prove the reduction formula:
$$\int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}xdx} = \frac{{m - 1}}{{m + n}}\int\limits_0^{\pi /2} {{{\sin }^{m - 2}}x{{\cos }^n}xdx} $$
This is done by integrating by parts with $\sin^{m-1} x=v$ and $\cos^n x \sin x dx = du$, which gives
$$\eqalign{
& \int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}xdx} = \frac{{m - 1}}{{n + 1}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^{m - 2}}x{\cos ^2}xdx \cr
& \int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}xdx} = \frac{{m - 1}}{{n + 1}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^{m - 2}}x\left( {1 - {{\sin }^2}x} \right)dx \cr
& \int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}xdx} = \frac{{m - 1}}{{n + 1}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^{m - 2}}xdx - \frac{{m - 1}}{{n + 1}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^m}xdx \cr
& \left( {1 + \frac{{m - 1}}{{n + 1}}} \right)\int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}x\sin xdx} = \frac{{m - 1}}{{n + 1}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^{m - 2}}xdx \cr
& \frac{{m + n}}{{n + 1}}\int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}x\sin xdx} = \frac{{m - 1}}{{n + 1}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^{m - 2}}xdx \cr
& \int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}x\sin xdx} = \frac{{m - 1}}{{m + n}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^{m - 2}}xdx \cr} $$
With this proved, we want to get to an easier integral. The pattern is evident:
$$\int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}x\sin xdx} = \frac{{m - 1}}{{m + n}}\frac{{m - 3}}{{m + n - 2}} \cdots \frac{{m - 2k + 1}}{{m + n - 2k + 2}}\int\limits_0^{\pi /2} {{{\cos }^n}x} {\sin ^{m - 2k}}xdx$$
So what we want now is $2k=m$. We get
$$\int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}x\sin xdx} = \frac{{\left( {m - 1} \right)!!}}{{m + n}}\frac{1}{{m + n - 2}} \cdots \frac{1}{{n + 2}}\int\limits_0^{\pi /2} {{{\cos }^n}x} dx$$
so it all burns down to finding
$$\int\limits_0^{\pi /2} {{{\cos }^n}x} dx$$
In the same spirit as before, we integrate by parts, reducing the power of the cosine:
$$\eqalign{
& \int\limits_0^{\pi /2} {{{\cos }^n}x} dx = \left( {n - 1} \right)\int\limits_0^{\pi /2} {{{\cos }^{n - 2}}x{{\sin }^2}xdx} \cr
& \int\limits_0^{\pi /2} {{{\cos }^n}x} dx = \left( {n - 1} \right)\int\limits_0^{\pi /2} {{{\cos }^{n - 2}}x\left( {1 - {{\cos }^2}x} \right)dx} \cr
& \int\limits_0^{\pi /2} {{{\cos }^n}x} dx = \left( {n - 1} \right)\int\limits_0^{\pi /2} {{{\cos }^{n - 2}}xdx} - \left( {n - 1} \right)\int\limits_0^{\pi /2} {{{\cos }^n}xdx} \cr
& n\int\limits_0^{\pi /2} {{{\cos }^n}x} dx = \left( {n - 1} \right)\int\limits_0^{\pi /2} {{{\cos }^{n - 2}}xdx} \cr
& \int\limits_0^{\pi /2} {{{\cos }^n}x} dx = \frac{{n - 1}}{n}\int\limits_0^{\pi /2} {{{\cos }^{n - 2}}xdx} \cr} $$
Depending on wether $n$ is or isn't even, we'll end up with
$$\int\limits_0^{\pi /2} {{{\cos}^n}x} dx =\begin{cases} \frac{{\left( {n - 1} \right)!!}}{{n!!}} \frac{\pi} 2 \text{ $n$ even} \cr \frac{{\left( {n - 1} \right)!!}}{{n!!}} \text{ $n$ odd} \end{cases}$$
Since the last factor will be either $${\int\limits_0^{\pi /2} {dx} }$$ or $${\int\limits_0^{\pi /2} {\cos xdx} }$$
You can easily show the same symmetric results, i.e.
$$\int\limits_0^{\pi /2} {{{\sin }^m}x{{\cos }^n}xdx} = \frac{{n - 1}}{{m + n}}\int\limits_0^{\pi /2} {{{\sin }^{m }}x{{\cos }^{n-2}}xdx} $$
and
$$\int\limits_0^{\pi /2} {{{\sin}^n}x} dx =\begin{cases} \frac{{\left( {n - 1} \right)!!}}{{n!!}} \frac{\pi} 2 \text{ $n$ even} \cr \frac{{\left( {n - 1} \right)!!}}{{n!!}} \text{ $n$ odd} \end{cases}$$
"Gluing" all this together, we get the first stated result
$$\int_0^{\pi /2}\sin^m\theta\cos^n\theta d \theta=\begin{cases} \frac{(m-1)!!(n-1)!!}{(m+n)!!} \text{ if any exponent is odd}\cr \frac{(m-1)!!(n-1)!!}{(m+n)!!}\frac{\pi} 2 \text{ both even exponents} \end{cases}$$
so
$$\int\limits_0^{\pi /2} {{{\sin }^7}x{{\cos }^5}x\sin xdx} = \frac{{\left( {7 - 1} \right)!!\left( {5 - 1} \right)!!}}{{\left( {7 + 5} \right)!!}} = \frac{1 }{{120}}$$
ADD: By letting $m=2y-1$ and $n=2x-1$, we get the famous Beta integral for integer values:
$$\int_0^{\pi /2} {{{\sin }^{2y - 1}}} \theta {\cos ^{2x - 1}}\theta d\theta = \frac{{(2y - 2)!!(2x - 2)!!}}{{(2x - 1 + 2y - 1)!!}}{\text{ = }}\frac{{{2^{y - 1}}\left( {y - 1} \right)!{2^{x - 1}}(x - 1)!}}{{{2^{y + x - 1}}(x + y - 1)!}}{\text{ = }}\frac{1}{2}\frac{{\left( {y - 1} \right)!(x - 1)!}}{{(x + y - 1)!}}$$