Answer (using partial integration):
$$\int\cos^6(x)\space\space\text{d}x=$$
$$\frac{1}{6}\sin(x)\cos^5(x)+\frac{5}{6}\int\cos^4(x)\space\space\text{d}x=$$
$$\frac{5}{24}\sin(x)\cos^3(x)+\frac{1}{6}\sin(x)\cos^5(x)+\frac{5}{8}\int\cos^2(x)\space\space\text{d}x=$$
$$\frac{5}{24}\sin(x)\cos^3(x)+\frac{1}{6}\sin(x)\cos^5(x)+\frac{5}{8}\int\left(\frac{1}{2}\cos(2x)+\frac{1}{2}\right)\space\space\text{d}x=$$
$$\frac{5}{24}\sin(x)\cos^3(x)+\frac{1}{6}\sin(x)\cos^5(x)+\frac{5}{32}\int\cos(2x)\space\space\text{d}x+\frac{5}{16}\int 1\space\space\text{d}x=$$
Substitute $u=2x$ and $\text{d}u=2\space\space\text{d}x$:
$$\frac{5}{24}\sin(x)\cos^3(x)+\frac{1}{6}\sin(x)\cos^5(x)+\frac{5}{32}\int\cos(u)\space\space\text{d}u+\frac{5}{16}\int 1\space\space\text{d}x=$$
$$\frac{5}{24}\sin(x)\cos^3(x)+\frac{1}{6}\sin(x)\cos^5(x)+\frac{5\sin\left(u\right)}{32}+\frac{5x}{16}+\text{C}=$$
$$\frac{5}{24}\sin(x)\cos^3(x)+\frac{1}{6}\sin(x)\cos^5(x)+\frac{5\sin\left(2x\right)}{32}+\frac{5x}{16}+\text{C}=$$
$$\frac{1}{192}\left(60x+45\sin(2x)+9\sin(4x)+\sin(6x)\right)+\text{C}$$
With boundaries:
$$\left[\frac{1}{192}\left(60x+45\sin(2x)+9\sin(4x)+\sin(6x)\right)\right]_{0}^{\pi}=$$
$$\frac{1}{192}\left[60x+45\sin(2x)+9\sin(4x)+\sin(6x)\right]_{0}^{\pi}=$$
$$\frac{1}{192}\left(60\pi+45\sin(2\pi)+9\sin(4\pi)+\sin(6\pi)\right)=$$
$$\frac{1}{192}\left(60\pi+0+0+0\right)=\frac{60\pi}{192}=\frac{5\pi}{16}$$