This thread is Q&A.
Problem
Given a Hilbert space $\mathcal{H}$.
Consider a normal operator: $$N:\mathcal{D}(N)\subseteq\mathcal{H}\to\mathcal{H}:\quad N^*N=NN^*$$
And its spectral measure: $$E:\mathcal{B}(\mathbb{C})\to\mathcal{B}(\mathcal{H}):\quad N=\int\lambda\mathrm{d}E(\lambda)$$
Regard pushforward: $$E_\eta:\mathcal{B}(\mathbb{C})\to\mathcal{B}(\mathcal{H}):\quad E_\eta(A):=E(\eta^{-1}A)$$
Then one obtains: $$\eta(N)=\int\lambda\,\mathrm{d}E_\eta(\lambda)$$
And for compositions: $$\vartheta(\eta(N))=(\vartheta\circ\eta)(N)$$
How can I prove this?
Application
For invertibles one gets: $$\mathcal{N}\eta(N)=(0):\quad\eta(N)^{-1}=\frac{1}{\eta}(N)=\frac{1}{\eta(N)}$$
That justifies notation!