0

This thread is Q&A.

Problem

Given Borel spaces $X$ and $Y$.

Consider a Borel measure: $$\mu:\mathcal{B}(X)\to\mathbb{C}:\quad\mu\geq0$$

Regard a pushforward: $$h\in\mathcal{B}(X,Y):\quad\nu:=\mu\circ h^{-1}$$

Then for integrability: $$g\in\mathcal{L}(Y;\nu)\iff g\circ h\in\mathcal{L}(X;\mu)$$

And one obtains: $$\int_Y g\,\mathrm{d}\nu=\int_X(g\circ h)\,\mathrm{d}\mu$$

How can I prove this?

Reference

This is a lemma for: Pushforward (SM)

C-star-W-star
  • 16,275

1 Answers1

0

For simple functions: $$s(h(x))=\sum_kb_k\delta_{h(x)\in B_k}=\sum_kb_k\delta_{x\in h^{-1}B_k}$$

Note that it remains: $$\nu(B_k)<\infty\implies\mu(h^{-1}B_k)<\infty$$

So one obtains: $$\int_Y s\mathrm{d}\nu=\sum_kb_k\nu(B_k)=\sum_kb_k\mu(h^{-1}B_k)=\int_X h\circ h\mathrm{d}\mu$$

By Beppo-Levi one gets: $$\int_Y|g|\,\mathrm{d}\nu=\lim_n\int_Ys_n\,\mathrm{d}\nu=\lim_n\int_X(s_n\circ h)\,\mathrm{d}\mu=\int_X|g\circ h|\,\mathrm{d}\mu$$

And equality follows from: $$g=\Re_+g-\Re_-g+i\Im_+g-i\Im_-g$$

Concluding the assertion.

C-star-W-star
  • 16,275