This thread is Q&A.
Problem
Given Borel spaces $X$ and $Y$.
Consider a Borel measure: $$\mu:\mathcal{B}(X)\to\mathbb{C}:\quad\mu\geq0$$
Regard a pushforward: $$h\in\mathcal{B}(X,Y):\quad\nu:=\mu\circ h^{-1}$$
Then for integrability: $$g\in\mathcal{L}(Y;\nu)\iff g\circ h\in\mathcal{L}(X;\mu)$$
And one obtains: $$\int_Y g\,\mathrm{d}\nu=\int_X(g\circ h)\,\mathrm{d}\mu$$
How can I prove this?
Reference
This is a lemma for: Pushforward (SM)