Given a Hilbert space $\mathcal{H}$.
Normal Operators: $$\mathcal{N}(\mathcal{H}):=\{N:N^*N=NN^*\}$$
Borel Calculus: $$\mathcal{B}(N):=\{\eta({N}):\eta\in\mathcal{B}(\mathbb{C},\mathbb{C})\}$$
Commutativity: $$N_\pm\in\mathcal{N}(\mathcal{H}):\quad N_+N_-=N_-N_+$$
Borel Calculus: $$\mathcal{B}(N_+)\subseteq\mathcal{B}(N_-)\lor\mathcal{B}(N_-)\subseteq\mathcal{B}(N_+)$$
Meet Operator: $$N_+\wedge N_-\in\mathcal{N}(\mathcal{H}):\quad\mathcal{B}(N_\pm)\subseteq\mathcal{B}(N_+\wedge N_-)$$ (Symbolic Meet!)