Problem
Given the algebra $\mathcal{M}_\mathbb{C}(2)$.
Denote the normals: $$\mathcal{N}:=\{N\in\mathcal{M}_\mathbb{C}(2):N^*N=NN^*\}$$
And their calculus: $$\mathcal{N}(N):=\{\eta(N):\eta\in\mathcal{B}(\mathbb{C})\}$$
Regard commuting ones: $$N,N'\in\mathcal{N}:\quad N'N=NN'$$
Do they admit one: $$N_0\in\mathcal{N}:\quad\mathcal{N}(N)\cup\mathcal{N}(N')\subseteq\mathcal{N}(N_0)$$
Are there counterexamples?
Attempt
Choose one nondiagonal: $$N=U^*DU\quad N'=D'$$
There exists one with: $$\eta_0(N)=\eta_0(U^*DU)\neq\eta_0(D)$$
But how to proceed then?
Reference
I need this for: Superalgebra