A common way to show that $\nabla \cdot \left(\frac{\hat r}{r^2}\right)=4\pi \delta (\vec r)$ is to regularize the function $\left(\frac{\hat r}{r^2}\right)$ in terms of a parameter, say $a$. To that end, let $\vec \psi$ be the regularized function given by
$$\vec \psi(\vec r;a)=\frac{\vec r}{(r^2+a^2)^{3/2}} \tag 1$$
Taking the divergence of $(1)$ reveals that
$$\nabla \cdot \vec \psi(\vec r; a)=\frac{3a^2}{(r^2+a^2)^{5/2}}$$
Now, for any sufficiently smooth test function $\phi$, we have that
$$\begin{align}
\lim_{a \to 0}\int_V \nabla \cdot \vec \psi(\vec r; a)\phi(\vec r)dV&=\lim_{a \to 0}\int_V \frac{3a^2}{(r^2+a^2)^{5/2}}\phi(\vec r)dV\\\\
&=0
\end{align}$$
if $V$ does not include the origin.
Now, suppose that $V$ does include the origin. Then, we have
$$\begin{align}
\lim_{a \to 0}\int_V \nabla \cdot \vec \psi(\vec r; a)\phi(\vec r)dV&=\lim_{a\to 0}\int_{V-V_{\delta}} \frac{3a^2}{(r^2+a^2)^{5/2}}\phi(\vec r)dV+\lim_{a\to 0}\int_{V_{\delta}} \frac{3a^2}{(r^2+a^2)^{5/2}}\phi(\vec r)dV\\\\
&=\lim_{a\to 0}\int_{V_{\delta}} \frac{3a^2}{(r^2+a^2)^{5/2}}\phi(\vec r)dV
\end{align}$$
where $V_{\delta}$ is a spherical region centered at $\vec r=0$ with radius $\delta$. For any $\epsilon>0$, take $\delta>0$ such that $|\phi(\vec r)-\phi(0)|\le \epsilon/(4\pi)$ whenever $0<|\vec r|< \delta$. Then, we have
$$\begin{align}
\lim_{a \to 0}\left|\int_V \nabla \cdot \vec \psi(\vec r; a)(\phi(\vec r)-\phi(0))\,dV\right|&\le \lim_{a\to 0} \int_{V_{\delta}} \left|\phi(\vec r)-\phi(0)\right|\frac{3a^2}{(r^2+a^2)^{5/2}}dV\\\\
&\le \left(\frac{\epsilon}{4\pi}\,4\pi\right)\,\lim_{a \to 0}\int_{0}^{\infty}\frac{3a^2}{(r^2+a^2)^{5/2}}r^2\,dr\\\\
&\le \epsilon
\end{align}$$
Thus, we have for any test function $\phi$,
$$\begin{align}
\lim_{a \to 0}\int_V \nabla \cdot \vec \psi(\vec r; a)\phi(\vec r)\,dV&=4\pi \phi(0)
\end{align}$$
and it is in this sense that
$$\bbox[5px,border:2px solid #C0A000]{\lim_{a\to 0} \nabla \cdot \vec \psi(\vec r;a)=4\pi \delta(\vec r)}$$