REGULARIZING THE DIRAC DELTA:
As I showed in This Answer, we can show that $\nabla \cdot \left(\frac{\hat r}{r^2}\right)=4\pi \delta (\vec r)$ by using a regularization of the Dirac Delta. To begin, let $\vec \psi$ be the function given by
$$\vec \psi(\vec r;a)=\frac{\vec r}{(r^2+a^2)^{3/2}} \tag 1$$
where we note that $\psi(\vec r;0)=\frac{\hat r}{r^2}$ for $\vec r\ne0$.
The divergence of $(1)$ is
$$\nabla \cdot \vec \psi(\vec r; a)=\frac{3a^2}{(r^2+a^2)^{5/2}}$$
And as shown in the referenced answer, for any test function $\phi$ we have
$$\begin{align}
\lim_{a \to 0}\int_V \nabla \cdot \vec \psi(\vec r; a)\phi(\vec r)\,dV=\begin{cases}4\pi \phi(0)&, \{0\}\in V\\\\
0&,\{0\}\notin V
\end{cases}
\end{align}$$
and it is in this sense that
$$\lim_{a\to 0} \nabla \cdot \vec \psi(\vec r;a)\sim 4\pi \delta(\vec r)$$
Enforcing the translation $\vec r\mapsto \vec r-\vec r'$ yields the coveted result
$$\bbox[5px,border:2px solid #C0A000]{\lim_{a\to 0} \nabla \cdot \vec \psi(\vec r-\vec r';a)\sim 4\pi \delta(\vec r-\vec r')}$$
CLASSICAL ANALYSIS:
We need not use the Dirac Delta to prove that $\nabla^2\int_{V}\rho(\vec r')G(\vec r,\vec r')\,dV'=\rho(\vec r)$.
For $\rho(\vec r)\in C^\infty_C$ the gradient of $\phi(\vec r)$ can be written
$$\begin{align}
\nabla \int_{V}\rho(\vec r')G(\vec r,\vec r')\,dV'&=\int_{V}\rho(\vec r')\nabla G(\vec r,\vec r')\,dV'\\\\
&=-\int_{V}\rho(\vec r')\nabla' G(\vec r,\vec r')\,dV'\\\\
&=-\oint_{\partial V}\rho(\vec r') G(\vec r,\vec r')\hat n'\,dS'+\int_{V}\nabla' \rho(\vec r')G(\vec r,\vec r')\,dV'\tag2
\end{align}$$
Taking the divergence of $(2)$ reveals
$$\begin{align}
\nabla^2 \int_{V}\rho(\vec r')G(\vec r,\vec r')\,dV'&=\oint_{\partial V}\rho(\vec r') \frac{\partial G(\vec r,\vec r')}{\partial n'}\,dS'-\int_{V}\nabla' \rho(\vec r')\cdot \nabla 'G(\vec r,\vec r')\,dV'\tag3
\end{align}$$
We may write the integrand of the integral on the right-hand side of $(3)$ as
$$\nabla' \rho(\vec r')\cdot \nabla 'G(\vec r,\vec r')=\nabla' \cdot (\rho(\vec r')\nabla' G(\vec r,\vec r'))-\rho(\vec r')\nabla'^2 G(\vec r,\vec r')$$
but cannot apply the Divergence Theorem since $\nabla'G(\vec r,\vec r')$is not continuously differentiable in $V$. We can work around this issue by proceeding as follows.
We exclude the singularity at $\vec r'=\vec r$ from $V$ with a spherical volume $V_\varepsilon$ with center at $\vec r$ and with radius $\varepsilon$. Then, using $\nabla'^2 G(\vec r,\vec r')=0$ for $\vec r'\in V-V\varepsilon$, we can write
$$\begin{align}
\int_{V}\nabla' \rho(\vec r')\cdot \nabla 'G(\vec r,\vec r')\,dV'&=\lim_{\varepsilon\to 0^+}\int_{V-V_\varepsilon}\nabla' \rho(\vec r')\cdot \nabla 'G(\vec r,\vec r')\,dV'\\\\
&=\lim_{\varepsilon\to 0}\int_{\partial V+\partial V_\epsilon}\rho(\vec r') \frac{\partial G(\vec r,\vec r')}{\partial n'}\,dS'\\\\
&=\int_{\partial V}\rho(\vec r') \frac{\partial G(\vec r,\vec r')}{\partial n'}\,dS'\\\\
&+\lim_{\varepsilon\to 0^+}\int_0^{2\pi}\int_0^\pi \rho(\vec r')\frac{\vec r-\vec r'}{\varepsilon^3}\cdot \frac{\vec r'-\vec r}{\varepsilon}\,\varepsilon^2\,\sin(\theta)\,d\theta\,d\phi\\\\
&=\int_{\partial V}\rho(\vec r') \frac{\partial G(\vec r,\vec r')}{\partial n'}\,dS'-4\pi \rho(\vec r)\tag4
\end{align}$$
Substituting $(4)$ into $(3)$, we find that
$$\bbox[5px,border:2px solid #C0A000]{\nabla^2 \int_{V}\rho(\vec r')G(\vec r,\vec r')\,dV'=4\pi \rho(\vec r)}\tag5$$
Inasmuch as $(5)$ is true for any test function $\rho(\vec r)$, we see that in the sense of distributions
$$\bbox[5px,border:2px solid #C0A000]{\nabla^2 G(\vec r,\vec r')=4\pi \delta(\vec r-\vec r')}$$