I used $$(n!)^{\frac{1}{n}}=e^{\frac{1}{n}\ln(n!)}=e^{\lim\limits_{n\to\infty}\frac{1}{n}\ln(n!)}$$ Then using Stirling's approximation and L'Hospital's rule on $$\lim\limits_{n\to\infty}\frac{\ln(n!)}{n}$$ I get $$\lim\limits_{n\to\infty}\frac{\ln(n!)}{n}=\lim\limits_{n\to\infty}(\ln(n)+\frac{n+\frac{1}{2}}{n}-1)=\infty$$ Now, $$e^{\lim\limits_{n\to\infty}\frac{1}{n}\ln(n!)}=e^{\infty}=\infty$$ Thus $$\lim\limits_{n\to\infty}\frac{1}{\sqrt[n]n}=\frac{1}{\infty}=0$$
Is this correct approach and what other methods could be used?