Consider the following:
$$
n! = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1 \geq \underbrace{{n\over 2}\cdot {n\over 2}\cdots {n \over 2}}_{{n \over 2}\text{times}} = \left({n\over 2}\right)^{n\over 2} \iff \\
\iff \sqrt[n]{n!} \ge \left({\left({n\over 2}\right)^{n\over 2}}\right)^{1\over n} = \sqrt{n\over 2} \iff {1\over \sqrt[n]{n!}} \le \sqrt{2\over n}
$$
Also $x_n \ge 0$, so by squeeze theorem:
$$
0 \le \lim_{n\to\infty} {1\over \sqrt[n]{n!}} \le \lim_{n\to \infty} \sqrt{2\over n} = 0
$$
Another way would be Stirling's approximation. Recall:
$$
n! \sim \sqrt{2\pi n} \left(n\over e\right)^{n}
$$
So:
$$
\lim_{n\to\infty} {1\over \sqrt[n]{n!}} = \lim_{n\to\infty} {1\over \sqrt[n]{2\pi n} }\left(e\over n\right) = 1\cdot 0 = 0
$$