What are sufficient conditions to conclude that $$ \lim_{a \to 0^{+}} \int_{0}^{\infty} f(x) e^{-ax} \, dx = \int_{0}^{\infty} f(x) \, dx \ ?$$
For example, for $a>0$, $$ \int_{0}^{\infty} J_{0}(x) e^{-ax} \, dx = \frac{1}{\sqrt{1+a^{2}}} \, ,$$
where $J_{0}(x)$ is the Bessel function of the first kind of order zero.
But I've seen it stated in a couple places without any justification that $$ \int_{0}^{\infty} J_{0}(x) \, dx = \lim_{a \to 0^{+}} \int_{0}^{\infty} J_{0}(x) e^{-ax} \, dx = \lim_{a \to 0^{+}} \frac{1}{\sqrt{1+a^{2}}} = 1 .$$
EDIT:
In user12014's answer, it is assumed that $ \int_{0}^{\infty} f(x) \, dx$ converges absolutely.
But in the example above, $ \int_{0}^{\infty} J_{0}(x) \, dx$ does not converge absolutely.
And there are other examples like
$$ \int_{0}^{\infty} \frac{\sin x}{x} \, dx = \lim_{a \to 0^{+}} \int_{0}^{\infty} \frac{\sin x}{x}e^{-ax} \, dx = \lim_{a \to 0^{+}} \arctan \left(\frac{1}{a} \right) = \frac{\pi}{2} $$
and
$$ \int_{0}^{\infty} \text{Ci}(x) \, dx = \lim_{a \to 0^{+}} \int_{0}^{\infty} \text{Ci}(x) e^{-ax} \, dx = - \lim_{a \to 0^{+}} \frac{\log(1+a^{2})}{2a} =0 \, ,$$ where $\text{Ci}(x)$ is the cosine integral.
SECOND EDIT:
Combining Daniel Fischer's answer below with his answer to my follow-up question shows that if $\int_{0}^{\infty} f(x) \, dx$ exists as an improper Riemann integral, then $$\lim_{a \to 0^{+}} \int_{0}^{\infty} f(x) e^{-ax} \, dx = \int_{0}^{\infty} f(x) \, dx.$$