2

What should be the strategy to solve these type of integrals. And how to solve this integral.

$\lim_{n \rightarrow \infty}{\int_ 0^1}\frac{n x^{n-1}}{1+x}dx$

I tried to solve it by substitution: multiplying and deviding by $x^n$ and substibution $t=x^n$ I got this

$\lim_{n \rightarrow \infty}{\int_ 0^1}\frac{1}{1+x^{1/n}}dx$

and don't know what to do now.

2 Answers2

3

Note that: $$\int_ 0^1\frac{n x^{n-1}}{1+x}dx=\left.\frac{x^n}{1+x}\right|_{0}^{1} +{\int_ 0^1}\frac{x^{n}}{(1+x)^2}dx=\frac{1}{2}+{\int_ 0^1}\frac{x^{n}}{(1+x)^2}dx$$ Furthermore: $$0\leq\int_ 0^1\frac{x^{n}}{(1+x)^2}dx\leq\int_ 0^1x^ndx=\frac{1}{n+1}$$

As $n\rightarrow \infty$, $\frac{1}{n+1}\rightarrow 0$ so the original integral $\rightarrow \frac{1}{2}$ by squeeze theorem.

Did
  • 279,727
2

$$=\lim_{n\to\infty}\int_0^1\frac 1 {1+x}\,d(x^n)=\int_0^1\frac 1 {1+x^2}\,du(x)=\frac 1 {1+1}=\frac 1 2$$ where $u(x)=I(x=1)$.

A.S.
  • 4,004