I thought that it might be instructive to present an approach to deriving the Fourier transform of $\log(x^2+a^2)$ that uses a regularization approach that is distinct from and complements the methodology I developed in THIS ANSWER. To that end, we now proceed.
PRELIMARIES
Let $\psi(x)=\log(x^2+a^2)$ and let $\Psi$ denote its Fourier Transform.
Then, we write
$$\Psi(k)=\mathscr{F}\{\psi\}(k)\tag 1$$
where $(1)$ is interpreted as a Tempered Distribution. That is, for any $\phi \in \mathbb{S}$, where $\mathbb{S}$ is the Schwartz Space, we can write
$$\langle \mathscr{F}\{\psi\}, \phi\rangle =\langle \psi, \mathscr{F}\{\phi\}\rangle$$
Now, let $\psi_\epsilon(x) =e^{-\varepsilon|x|}\log(x^2+a^2)$, $\varepsilon>0$. Therefore, $\psi(x)=\lim_{\varepsilon\to 0^+}\psi_\varepsilon(x)$ and we see that
$$\begin{align}
\lim_{\varepsilon\to 0^+}\langle \mathscr{F}\{\psi_\varepsilon\}, \phi\rangle&=\lim_{\varepsilon\to 0^+}\langle \psi_\varepsilon, \mathscr{F}\{\phi\}\rangle \\\\
&=\langle \psi,\mathscr{F}\{\phi\}\rangle\\\\
&=\langle \mathscr{F}\{\psi\}, \phi\rangle\tag2
\end{align}$$
Next, we will evaluate the Fourier transform of $\psi_\varepsilon$ and subsequently use $(2)$ to find the Fourier Transform of $\psi(x)$.
EVALUATING THE FOURIER TRANSFORM OF $\displaystyle \psi_\varepsilon$
Denote by $\Psi_\epsilon$, the Fourier transform of $\psi_\varepsilon$. Then, we have
$$\begin{align}
\Psi_\varepsilon(k)&=\mathscr{F}\{\psi_\epsilon\}(k)\\\\
&=\int_{-\infty}^\infty e^{-\varepsilon|x|}\log(x^2+a^2) e^{ikx}\,dx\\\\
&=2\text{Re}\left(\int_0^\infty e^{-(\varepsilon -ik)x}\log(x^2+a^2) \,dx\right)\tag3\\\\
&=\frac{4\varepsilon \log(|a|)}{k^2+\varepsilon^2}+2|a|\int_0^\infty e^{-\varepsilon |a| x}\cos(|a|kx)\log(x^2+1)\,dx\\\\
&=\frac{4\varepsilon \log(|a|)}{k^2+\varepsilon^2}-4\int_0^\infty \frac{e^{-\varepsilon |a|x}(|k|x\sin(|ak|x)-\varepsilon x\cos(|ak|x))}{(x^2+1)(k^2+\varepsilon^2)}\,dx\tag4\\\\
&=\psi^{(1)}_\varepsilon+\psi^{(2)}_\varepsilon+\psi^{(3)}_\varepsilon
\end{align}$$
where in $(4)$
$$\begin{align}
\psi^{(1)}_\varepsilon(k)&=\frac{4\varepsilon \log(|a|)}{k^2+\varepsilon^2}\\\\
\psi^{(2)}_\varepsilon(k)&=-4\int_0^\infty \frac{|k|xe^{-\varepsilon |a|x}\sin(|ak|x)}{(x^2+1)(k^2+\varepsilon^2)}\,dx\\\\
\psi^{(3)}_\varepsilon(k)&=4\int_0^\infty \frac{\varepsilon x e^{-\varepsilon |a|x}\cos(|ak|x)}{(x^2+1)(k^2+\varepsilon^2)}\,dx
\end{align}$$
NOTE:
In going from $(3)$ to $(4)$, we took the real part, enforced the substitution $x\mapsto |a|x$, and integrated by parts with $u=\log(x^2+1)$ and $\displaystyle v=-\frac{e^{-\varepsilon |a| x}(|k|\sin(|ak|x)-\varepsilon \cos(|ak|x))}{|a|(k^2+a^2)}$.
Next, we will find the distributional limits of $\psi^{(1)}_\varepsilon$, $\psi^{(2)}_\varepsilon$, and $\psi^{(3)}_\varepsilon$.
DISTRIBUTIONAL LIMITS OF $\displaystyle \psi^{(1)}_\varepsilon$, $\displaystyle \psi^{(2)}_\varepsilon$, and $\displaystyle \psi^{(3)}_\varepsilon$
Let $\phi\in \mathbb{S}$. Then, the distributional limit of $\psi^{(1)}_\varepsilon$ is
$$\begin{align}
\lim_{\varepsilon\to 0^+}\langle \psi^{(1)}_\varepsilon, \phi\rangle &=\lim_{\varepsilon\to 0^+}\int_{-\infty}^\infty \phi(k) \frac{4\varepsilon \log(|a|)}{k^2+\varepsilon^2}\,dk\\\\
&=\lim_{\varepsilon\to 0^+} \int_{-\infty}^\infty \phi(\varepsilon k)\frac{4\log(|a|)}{k^2+1}\,dk\\\\
&=4\pi \log(|a|)\phi(0)\tag5
\end{align}$$
where we applied the Dominated Convergence Theorem to arrive at $(5)$.
Choose any $\nu >0$. Then, the distributional limit of $\psi^{(2)}_\varepsilon+\psi^{(3)}_\varepsilon$ is
$$\begin{align}
\lim_{\varepsilon\to 0^+}\langle \psi^{(2)}_\varepsilon+\psi^{(3)}_\varepsilon, \phi\rangle &=\lim_{\varepsilon\to 0^+}\int_{-\infty}^\infty \phi(k)\psi^{(2)}_\varepsilon(k) \,dk \\\\
&=\lim_{\varepsilon\to 0^+} \int_{-\infty}^\infty \left(\phi(k)-\phi(0)\xi_{[-\nu,\nu]}(k)\right)\psi^{(2)}_\varepsilon(k) \,dk\\\\
&+\lim_{\varepsilon\to 0^+} \int_{-\infty}^\infty \left(\phi(k)-\phi(0)\xi_{[-\nu,\nu]}(k)\right)\psi^{(3)}_\varepsilon(k) \,dk\\\\
&+\phi(0)\lim_{\varepsilon\to 0^+}\int_{-\nu}^\nu (\psi^{(2)}_\varepsilon(k)+\psi^{(3)}_\varepsilon(k)) \,dk\tag6
\end{align}$$
where in $(6)$, $\xi_{[-\nu,\nu]}(k)$ is the indicator function.
To evaluate the limit of third integral on the right-hand side of $(6)$, we write
$$\begin{align}
\lim_{\varepsilon\to 0^+}\int_{-\nu}^\nu (\psi^{(2)}_\varepsilon(k)+\psi^{(3)}_\varepsilon(k)) \,dk&=4\lim_{\varepsilon\to 0^+}\int_0^\infty e^{-\varepsilon |a|x}\log(x^2+1)\frac{\sin(|a|\nu x)}{kx}\,dx\tag7\\\\
&=4\int_0^\infty \log(x^2+1)\frac{\sin(|a|\nu x)}{x}\,dx\tag8\\\\
&=-4\pi \text{Ei}(-|a|\nu)\tag9
\end{align}$$
NOTE:
In going from $(7)$ to $(8)$ we justified interchanging the limit with the integral appealing to the result in This Answer). In going from $(8)$ to $(9)$ we used Feynman's Trick by introducing a parameter $b$ (i.e., $\log(x^2+b)$), applied the residue theorem, and used $\lim_{|a|\to \infty}\int_0^\infty \log(x^2+1)\frac{\sin(|a|\nu x)}{x}\,dx=0$, which can be shown using integration by parts.
It is straightforward to evaluate the limit of second integral on the right-hand side of $(6)$ and find that
$$\begin{align}
\lim_{\varepsilon\to 0^+} \int_{-\infty}^\infty \left(\phi(k)-\phi(0)\xi_{[-\nu,\nu]}(k)\right)\psi^{(3)}_\varepsilon(k) \,dk=0
\end{align}$$
Next, it is straightforward to evaluate the limit of first integral on the right-hand side of $(6)$, we denote $I_\nu(a)$. and find that
$$\begin{align}
I_\nu(a)&=\lim_{\varepsilon\to 0^+} \int_{-\infty}^\infty \left(\phi(k)-\phi(0)\xi_{[-\nu,\nu]}(k)\right)\psi^{(2)}_\varepsilon(k) \,dk\\\\
&=-4\int_{-\infty}^\infty \frac{\phi(k)-\phi(0)\xi_{[-\nu,\nu]}(k)}{|k|}\int_0^\infty \frac{x\sin(|ak|x)}{x^2+1}\,dx\,dk\\\\
&=-2\pi \int_0^\infty \left(\phi(k)-\phi(0)\xi_{[-\nu,\nu]}(k)\right) \frac{e^{-|ak|}}{|k|}\,dk\tag{10}
\end{align}$$
Finally, using $(5)$, $(6)$, $(9)$ and $(10)$ yields
$$\bbox[5px,border:2px solid #C0A000]{\mathscr{F}\{\psi\}(k)=4\pi (\log(|a|)-\text{Ei}(-|\nu a|))\delta(k)-2\pi \left(\frac{e^{-{|ak|}}}{|k|}\right)_\nu}$$
where the distribution $\left(\frac{e^{-|ak|}}{|k|}\right)_\nu$ is defined by its action on any $\phi\in \mathbb{S}$
$$\int_{-\infty}^\infty \left(\frac{e^{-|ak|}}{|k|}\right)_\nu\phi(k)\,dk=\int_{-\infty}^\infty \left(\phi(k)-\phi(0)\xi_{[-\nu,\nu]}(k)\right)\frac{e^{-|ak|}}{|k|}\,dk$$
And for an even function $f$, we define the Fourier cosine transform as $1/2$ the Fourier transform $f$. That is, we have
$$\bbox[5px,border:2px solid #C0A000]{\mathscr{F}_C\{\psi\}(u)=2\pi (\log(|a|-\text{Ei}(-|\nu a|)))\delta(u)-\pi \left(\frac{e^{-{|au|}}}{|u|}\right)_1}$$
NOTE:
For $\nu=1$ and $a\to 0$, $-4\pi (\log(|a|)-\text{Ei}(-\nu |a|))\to -4\pi \gamma$, which agrees with the results in the THIS ANSWER and THIS ONE for the Fourier Transform of $\log(|x|)$.