Let $f: X \rightarrow Y$ be a function and $ A \subseteq Y$ and $B \subseteq Y$. Prove that $f^{-1}(A)\setminus f^{-1}(B)= f^{-1}(A \setminus B)$.
My defintion of inverse image is Let $f: X \rightarrow Y$ be a function and let $V \subseteq Y$. The inverse image of V is the set $f^{-1}(V)$ $=$ $\{x\in X$ such that $f(x) \in V \}$
I know I need to prove the RHS is an element in the LHS and vice versa. Where should I start?