I want to prove the following equation:
$$ f^{-1}(B_{1}\setminus B_{2}) = f^{-1}(B_{1})\setminus f^{-1}(B_{2}) $$
Is this a valid proof? I am not sure, because at one point I am looking at $f(x) \in B_1$, but then $x \in f^{-1}(B_1)$ could be actually some different points.
$$\begin{align*} x \in f^{-1}(B_{1}\setminus B_{2}) &\iff f(x) \in B_{1}\setminus B_{2} \\ &\iff f(x) \in B_{1} \land f(x) \notin B_{2} \\ &\iff x \in f^{-1}(B_{1}) \land x \notin f^{-1}(B_{2}) \\ &\iff x \in f^{-1}(B_{1})\setminus f^{-1}(B_{2}) \end{align*}$$