With the minimum, a bit of cleverness is necessary:
$$\begin{align}
\mathbb{P}\left(Z \leq z\right) = \mathbb{P}\left(\min(X, Y) \leq z\right) &= 1 - \mathbb{P}\left(\min(X, Y) > z\right) \\
&= 1 - \mathbb{P}\left(\text{both }X \text{ and }Y > z\right) \\
&= 1 - \mathbb{P}(X > z)\mathbb{P}(Y>z)\text{.}
\end{align}$$
Note the above is the distribution function of $Z$. Now
$$\mathbb{P}(X > z) = \sum\limits_{k = z+1}^{\infty}(1-p)^{k-1}p = p[(1-p)^{z}+(1-p)^{z+1}+\cdots] = p(1-p)^{z}\left[\dfrac{1}{1-(1-p)}\right] = (1-p)^{z}\text{, } \quad |1-p|<1\text{.}$$
You can find a similar result for $\mathbb{P}(Y > z)$.
Use the resulting equation of $\mathbb{P}(Z \leq z)$ to derive an explicit formula for $\mathbb{P}\left(Z = z\right)$ by using that
$$\mathbb{P}\left(Z = z\right) = \mathbb{P}\left(Z \leq z\right) - \mathbb{P}\left(Z \leq z-1\right)\text{.}$$