Let $X\sim\mathcal{Geo}(p), Y\sim\mathcal{Geo}(q), X\perp Y$
$\begin{align}
\Pr(X\geq k) & = (1-p)^{k-1} & \impliedby X\sim \mathcal{Geo}(p) \tag{1}
\\[2ex]
\Pr(Y\geq k) & = (1-q)^{k-1}& \impliedby Y\sim \mathcal{Geo}(q)\tag{2}
\\[2ex]
\Pr(\min(X,Y)\geq k) & = \Pr(X\geq k,Y\geq k)
\\[1ex] & = \Pr(X\geq k)\Pr(Y\geq k) & \impliedby X\perp Y
\\[1ex] & = (1-p)^{k-1}(1-q)^{k-1} & \impliedby (1)\wedge (2) \tag{3}
\\[2ex]
\Pr(\min(X,Y)= k) & = \Pr(\min(X,Y)\geq k) - \Pr(\min(X,Y)\geq k+1)
\\[1ex] & = (1-p)^{k-1}(1-q)^{k-1} - (1-p)^{k}(1-q)^{k}
\\[1ex] & = (p+q-pq)((1-p)(1-q))^{k-1}
\\[1ex] & = (p+q-pq)(1-(p+q-pq))^{k-1}
\end{align}$
Another approach.
$X$ is the number of trials until a success with trial probability $p$, and $Y$ is the number of trials until a success with trial probability $q$, the $\min(X,Y)$ is the number of trials until either success; so it is geometric with trial probability $p+q-pq$ (the probability of the union).
Then $\min(X,Y) \sim\mathcal{Geo}(p+q-pq)$
In chronological order: 90782, 845706, 1056296, 1169142, and 1207241.
– Lee David Chung Lin Mar 21 '18 at 01:17