0

I'm trying to prove the following limit

$$(\frac{2^n}{n!}) \to 0$$

But it seems difficault to me. How can I prove it?

Thanks.

teree
  • 11

1 Answers1

2

\begin{align} a_n =\frac{2^n}{n!} = \frac{2\cdot \ldots \cdot 2}{1\cdot 2\cdot \ldots \cdot n} \end{align} Assume, that $n\geq 4$, then \begin{align} a_n =\frac{2^n}{n!} = \frac21\frac22\frac23\frac24 \cdot\ldots \cdot \frac2n \end{align} Now, all fractions between $\frac24$ and $\frac2n$ are smaller or equal $\frac24$, so you can bound your sequence \begin{align} a_n &=\frac{2^n}{n!} \leq \frac21\frac22\frac23\frac24 \frac24 \cdot\ldots \cdot \frac24\\ &= \frac21\frac22\frac23 \Bigl(\frac24\Bigr)^{n-3} =\frac86\Bigl(\frac24\Bigr)^{n-3} \end{align} Do you know, what happens to $\Bigl(\frac24\Bigr)^{n-3} $ for $n\rightarrow \infty$?

Thomas
  • 4,363