Show that for any a in $\mathbb{R}$
$$\lim_{n\to ∞} \frac{a^n}{n!} = 0. $$ Hint: There exists a $n\in\mathbb{N}$ such that $n > |a|.$
I really do not know how to begin here with the proof and I would appreciate your help.
Show that for any a in $\mathbb{R}$
$$\lim_{n\to ∞} \frac{a^n}{n!} = 0. $$ Hint: There exists a $n\in\mathbb{N}$ such that $n > |a|.$
I really do not know how to begin here with the proof and I would appreciate your help.
Pick any such $N$ and pick $r$ such that $\dfrac{|a|}{N}<r<1$. For all $n>N$
$$\dfrac{|a|^n}{n!} = \underbrace{\left|\dfrac{a}{1}\dfrac{a}{2}\dfrac{a}{3}\cdots \dfrac{a}{N}\right|}_{:= \ C}\left(\dfrac{|a|}{N+1}\dfrac{|a|}{N+2}\dfrac{|a|}{N+3}\cdots \dfrac{|a|}{n}\right)< Cr^{n-N}$$
Now $r<1$. So?
Since: $$\prod_{n=1}^{N}\left(1+\frac{1}{n}\right)=N+1$$ we have: $$ n! = \frac{n^n}{\prod_{k=1}^{n-1}\left(1+\frac{1}{k}\right)^k}>e\cdot\left(\frac{n}{e}\right)^n \tag{1}$$ because for any $k\in\mathbb{N}^*$ we have $\left(1+\frac{1}{k}\right)^k<e$. A straightforward consequence of $(1)$ is that: $$\left|\frac{a^n}{n!}\right|<\frac{1}{e}\left(\frac{|a|e}{n}\right)^n,$$ hence, assuming $n\geq 2e|a|$, $$\left|\frac{a^n}{n!}\right| < \frac{1}{2^n}\to 0.$$
If $T_m=\dfrac{a^m}{m!},$
$$\lim_{n\to\infty}\frac{T_{n+1}}{T_n}=\lim_{n\to\infty}\frac a{n+1}=0$$ for finite $a$
So, $\sum T_r$ must converge $\implies\lim_{n\to\infty}T_n=0$
Alternatively for $N>|a|,$ $$\dfrac{a^m}{N!}<\frac aN$$