It recently came to my mind, how to prove that the factorial grows faster than the exponential, or that the linear grows faster than the logarithmic, etc...
I thought about writing: $$ a(n) = \frac{k^n}{n!} = \frac{ k \times k \times \dots \times k}{1\times 2\times\dots\times n} = \frac k1 \times \frac k2 \times \dots \times \frac kn = \frac k1 \times \frac k2 \times \dots \times \frac kk \times \frac k{k+1} \times \dots \times \frac kn $$ It's obvious that after k/k, every factor is smaller than 1, and by increasing n, k/n gets closer to 0, like if we had $\lim_{n \to \infty} (k/n) = 0$, for any constant $k$.
But, I think this is not a clear proof... so any hint is accepted. Thank you for consideration.