Prove by induction: $\sum_{i=1}^n i^3 = \left[\sum_{i=1}^n i\right]^2$. Hint: Use $k(k+1)^2 = 2(k+1)\sum i$.
Basis: $n = 1$ $\sum_{i=1}^1 i^3 = \left[\sum_{i=1}^1 i\right]^2 \to 1^3 = 1^2 \to 1 = 1$.
Hypothesis: Assume true for all $n \le k$.
So far I have the following:
$$\sum_{i=1}^{k+1} i^3 = (k+1)^3 + \sum_{i=1}^k i^3$$
$$(k+1)^3 + \left[\sum_{i=1}^k i\right]^2$$