Hint $\ $ Put $\ b_i = 2\ $ in this sketched proof of the uniqueness of mixed-radix representation
$$\begin{eqnarray} n &=& d_0 +\ d_1\, b_0 +\ d_2\, b_1\,b_0 +\ d_3\, b_2\,b_1\,b_0 +\ \cdots, \quad 0 \le d_i < b_i,\ \ b_i > 1\\[0.1em]
&=&c_0\, +\, c_1\, b_0 +\, c_2\,\, b_1\,b_0 + \, c_3\,\, b_2\,b_1\,b_0 +\ \cdots, \quad 0 \le c_i < b_i\end{eqnarray}$$
$\, c_0 = d_0\ $ since $\,{\rm mod}\ b_0\!:\ c_0 \equiv n\equiv d_0\, $ and $\ 0 \le c_0,d_0 < b_0.\, $ Now induct on smaller tails
$$\begin{eqnarray} (n-d_0)/b_0 &=& d_1 +\ d_2\, b_1 +\ d_3\, b_2\, b_1 + \ \cdots\\[0.1em]
=\, (n-c_0)/b_0 &=& c_1 +\, c_2\,\, b_1 +\ c_3\ b_2\, b_1 + \ \cdots \end{eqnarray}$$
$(n-d_0)/b_0 \le\, n/b_0 <\, n\ $ by $\,d_0 \ge 0,\ b_0 > 1,\,$ so by induction $\ c_i = d_i\ $ for $\,i \ge 1.$