It deserves to be better known that uniqueness of radix rep is a special case of the Rational Root Test, i.e. an integer root of an integer coef polynomial divides the least degree coef, e.g.
$\qquad11001_2 = g(2),\,\ \ g(x) = x^4+x^3+1$
$\qquad 10011_2 = h(2),\ \ h(x) = x^4+x+1$
If they're equal $\, 0 = g(2)-h(2) =: f(2)\,$ for $\,f = g-h = x(x^2-1)\,$ so $\,2\,$ is a root of $\,x^2-1\,$ so $\, 2^2 = 1\,\Rightarrow\, 2\mid 1,\,$ contradiction. This idea works generally - the nonzero coef's of $g-h$ are $\pm1$ contra the root $2$ must divide the least degree such coef. Below is the proof for general radix.
If $\,g(x) = \sum g_i x^i$ is a polynomial with integer coefficients $\,g_i\,$ such that $\,0\le g_i < b\,$ and $\,g(b) = n\,$ then we call $\,(g,b)\,$ a radix $\,b\,$ representation of $\,n.\,$ It is unique: $ $ if $\,n\,$ has another rep $\,(h,b),\,$ with $\,g(x) \ne h(x),\,$ then $\,f(x)= g(x)-h(x)\ne 0\,$ has root $\,b\,$ but all coefficients $\,\color{#c00}{|f_i| < b},\,$ contra the below slight generalization of: $ $ integer roots of integer polynomials divide their constant term.
Theorem $\ $ If $\,f(x) = x^k(\color{#0a0}{f_0}\!+f_1 x +\cdots + f_n x^n)=x^k\bar f(x)\,$ is a polynomial with integer coefficients $\,f_i\,$ and with $\,\color{#0a0}{f_0\ne 0}\,$ then an integer root $\,b\ne 0\,$ satisfies $\,b\mid f_0,\,$ so $\,\color{#c00}{|b| \le |f_0|}$
Proof $\ \ 0 = f(b) = b^k \bar f(b)\,\overset{\large b\,\ne\, 0}\Rightarrow\, 0 = \bar f(b),\,$ so, subtracting $\,f_0$ from both sides yields $$-f_0 =\, b\,(f_1\!+f_2 b+\,\cdots+f_n b^{n-1})\, \Rightarrow\,b\mid f_0\, \overset{\large \color{#0a0}{f_0\,\ne\, 0}}\Rightarrow\, |b| \le |f_0|\qquad {\bf QED}\qquad\quad$$