given function $$f(s)=\frac{1}{s}\frac{\sqrt{s}-1}{\sqrt{s}+1}$$ and $$\int_{0}^{\infty}{\frac{e^{-xt}}{\sqrt{x}(x+1)}dx=\pi e^t {erfc}(\sqrt{t})}$$
my steps:
contour:$A->B->C->D->E->F->A$ anti-clockwise
$AB$ straight vertical down to up $AB$
$BC$ arc with radius of $R$
$CD$ straight horizontal from $-R$ to $-\epsilon$
$DE$ arc with radius of $-\epsilon$
$EF$ straight horizontal from $-\epsilon$ to $-R$
$FA$ arc with radius of $R$
1. $\int_{BC}=\int_{FA}=0$
2.$CD$:
$s(x)=xe^{\pi i}$ where $x \in[R -> \epsilon]$ and $s'(x)=e^{\pi i}=-1$ and $\sqrt{s}=i\sqrt{x}$
thus $$\int_{CD}=\int_{R}^{\epsilon}{\frac{e^{tx{e^{\pi i}}}}{xe^{\pi i}}{\frac{i\sqrt{x}-1}{i\sqrt{x}+1}}{e^{\pi i}}}dx=-\int_{\epsilon}^{R}{\frac{e^{-xt}}{x}{\frac{i\sqrt{x}-1}{i\sqrt{x}+1}}}dx$$
3.$EF$
$s(x)=xe^{-\pi i}$ where $x \in[\epsilon -> R]$ and $s'(x)=e^{-\pi i}=-1$ and $\sqrt{s}=-i\sqrt{x}$
thus $$\int_{EF}=\int_{\epsilon}^{R}{\frac{e^{tx{e^{-\pi i}}}}{xe^{-\pi i}}{\frac{-i\sqrt{x}-1}{-i\sqrt{x}+1}}{e^{-\pi i}}}dx=-\int_{\epsilon}^{R}{\frac{e^{-xt}}{x}{\frac{i\sqrt{x}+1}{i\sqrt{x}-1}}}dx$$
4.$DE$
$s(\theta)=\epsilon e^{i \theta}$ where $\theta\in[\pi -> -\pi]$ and $s'(\theta)=i\epsilon e^{i \theta}$
thus
$$\int_{\pi}^{-\pi}{\frac{e^{t\epsilon e^{i\theta}}}{\epsilon e^{i\theta}}\frac{\sqrt{\epsilon}{ e^{\frac{i\theta}{2}}-1}}{{\sqrt{\epsilon} e^{\frac{i\theta}{2}}+1}}}{i\epsilon e^{i\theta}}d{\theta}=-i\int_{-\pi}^{\pi}{{e^{t\epsilon e^{i \theta}}}{\frac{{\sqrt{\epsilon}}{e^{i \frac{\theta}{2}}} -1}{{\sqrt{\epsilon}}{e^{i \frac{\theta}{2}}} +1}}}d{\theta}$$
over all
$\int_{AB}=-\lim_{R->\infty,\epsilon->0}{[\int_{CD}+\int_{ED}+\int_{EF}]}$
$$\int_{AB}=-\lim_{R->\infty,\epsilon->0}{[-\int_{\epsilon}^{R}{\frac{e^{-xt}}{x}{(\frac{i\sqrt{x}-1}{i\sqrt{x}+1} + \frac{i\sqrt{x}+1}{i\sqrt{x}-1})}}dx - -i\int_{-\pi}^{\pi}{{e^{t\epsilon e^{i \theta}}}{\frac{{\sqrt{\epsilon}}{e^{i \frac{\theta}{2}}} -1}{{\sqrt{\epsilon}}{e^{i \frac{\theta}{2}}} +1}}}d{\theta}}]$$
$$\int_{AB}=\int_{0}^{\infty}{\frac{e^{-xt}}{x}{\frac{2(x-1)}{x+1}}}dx + i\int_{-\pi}^{\pi}{(-1)d{\theta}}$$
$$=2\int_{0}^{\infty}{\frac{e^{-xt}}{x}{({\frac{x}{x+1}}-{\frac{1}{x+1}})}}dx - 2 \pi i$$
$$=2\int_{0}^{\infty}{{({\frac{e^{-xt}}{x+1}}-{\frac{e^{-xt}}{x(x+1)}})}}dx - 2 \pi i$$
$$=2\int_{0}^{\infty}{{{{\sqrt{x}}\frac{e^{-xt}}{\sqrt{x}(x+1)}}-{\frac{1}{\sqrt{x}}\frac{e^{-xt}}{\sqrt{x}(x+1)}}}}dx - 2 \pi i$$
upto here... then .. I cannot do more..
need help...