$x^x = (e^{\log x})^x = e^{x \log x}$
$\lim_{x\rightarrow0^-} e^{x \log x} = e^{\lim_{x\rightarrow0^-} x \log x}$
$\lim_{x\rightarrow0^-} x \log x = \lim_{x\rightarrow0^-} \frac{\log x}{(\frac{1}{x})} = \lim_{x\rightarrow0^-} \frac{(\log x)'}{(\frac{1}{x})'} = \lim_{x\rightarrow0^-} \frac{\frac{1}{x}}{(-\frac{1}{x^2})} = \lim_{x\rightarrow0^-} -x = 0$
Im stuck