Today in class, the instructor is trying to show that for $n \ge 0$, $n < 2^n$. And this are the steps he took:
First we assume the inductive hypothesis i.e. $0 < 2^0$, and this is true. Then to prove that for any arbitrary integer $k \ge 0$, $k < 2^k$. The proof proceeds as follows:
Assume $k < 2^k$ is true for $k ge 0$.
Show that $(k + 1) < 2 ^{k + 1}$.
By induction hypothesis, $k < 2^k$ thus $k + 1 < 2^k + 1 < 2^k + 2^k = 2^{k + 1}$.
Thus by mathematical induction the result has been proven
My question now is how was step 3 derived? Where does the extra $2^k$ manifest from?