Evaluation of $\displaystyle \int \sin (2015x)\cdot \sin^{2013}(x)dx$
$\bf{My\; Try::}$ Let $\displaystyle I = \int \sin (2015x)\cdot \sin^{2013}(x)dx = \int \sin (2014x+x)\cdot \sin^{2013}(x)dx$
So $\displaystyle I = \int \left(\sin 2014x\cdot \cos x+\cos 2014x\cdot \sin x\right)\cdot \sin^{2013}(x)dx $
So $\displaystyle I = \int \sin (2014x)\cdot \sin^{2013}(x)\cdot \cos x dx +\int \cos (2014x)\cdot \sin^{2014}(x)dx$
Now Using Integration by parts for $\bf{(I)}$ Integral..
So $\displaystyle I = \sin (2014x)\cdot \frac{\sin^{2014}(x)}{2014}-\frac{2014}{2014}\int \cos(2014x)\cdot \sin^{2014}(x)dx+\int \cos (2014x)\cdot \sin^{2014}(x)dx$
So $\displaystyle I = \sin (2014 x)\cdot \frac{\sin^{2014}(x)}{2014}+\mathcal {C}$
Can We solve it using Complex no. Something like $\displaystyle \sin x = \frac{e^{ix}-e^{-ix}}{2i}$
If yes, Then plz explain it to me , Thanks