Evaluate the indefinite integral
$$I(a,b)=\int \sin(ax) \sin^b(x)\mathrm{d}x \hspace{40pt} a,b\in\mathbb{N}$$
How do we evaluate the above indefinite integral?
Here is a question with $a=2015$ and $b=2013$, I was thinking of generalising this integral , so I tried using complex numbers by letting $z=\cos x+i\sin x$ , therefore $\mathrm{d}z=i ~z \mathrm{d}x$ and $\sin(ax)=\Im{(z^a)}$, so our integral converts to $$\Im{\left[\int z^a \left(\frac{z^2-1}{2iz}\right)^b \frac{\mathrm{d}z}{iz}\right] }=\frac{1}{2^{b}}\Im{\left[\frac{1}{i^{b+1}}\int z^{a-b-1}(z^2-1)^b\mathrm{d}z\right]} $$
Should we proceed further by binomial theorem?
Or possibly, a recurrence relation can be made...
Or it could be that it is not possible to do by hand...