I suppose the independent variable is the period ratio $\tau$.
I will express $1/J(\tau)$ as a Laurent series
in $z = 2\pi\mathrm{i}(\tau - \tau_0)$
where $\tau_0$ is a zero of $J$.
Using $z$ gives rise to the differential operator
$$(\ )' = \frac{\mathrm{d}}{\mathrm{d}z}
= \frac{1}{2\pi\mathrm{i}}\frac{\mathrm{d}}{\mathrm{d}\tau}
= q\frac{\mathrm{d}}{\mathrm{d}q}
\quad\text{where}\quad q = \exp(2\pi\mathrm{i}\tau)$$
I will express everything using
Eisenstein series
$\operatorname{E}_2,\operatorname{E}_4,\operatorname{E}_6$.
These are holomorphic on all of $\mathbb{H}\cup\{\mathrm{i}\infty\}$
and are coupled by the following system of differential
equations:
$$\begin{align}
\operatorname{E}_2'
&= \frac{1}{12}\left(\operatorname{E}_2^2 - \operatorname{E}_4\right)
\\\operatorname{E}_4'
&= \frac{1}{3}\left(\operatorname{E}_2\operatorname{E}_4
- \operatorname{E}_6\right)
\\\operatorname{E}_6'
&= \frac{1}{2}\left(\operatorname{E}_2\operatorname{E}_6
- \operatorname{E}_4^2\right)
\end{align}$$
Since $\operatorname{E}_2,\operatorname{E}_4,\operatorname{E}_6$
have no pairwise common zeros, the above system of equations implies
that their derivatives are nonzero at their zeros.
This means that all their zeros are simple.
Mathematica's KleinInvariantJ
is
$$J = \frac{j}{1728}
= \frac{\operatorname{E}_4^3}{\operatorname{E}_4^3-\operatorname{E}_6^2}$$
The denominator is a multiple of the modular discriminant and therefore
finite and nonzero on $\mathbb{H}$.
The zeros of $J$ are therefore the zeros of $\operatorname{E}_4$
with three-fold multiplicity.
One of those zeros is located at
$\tau_0 = \zeta_3 = \exp(2\pi\mathrm{i}/3)$, but initially I will only assume
$\operatorname{E}_4(\tau_0) = 0$ for greater generality.
For the upcoming calculations, I will use a symbolic calculator,
in this case Pari/GP. GP has a marvellous diffop
function
that allows you to specify a list of symbols and a list of their
derivatives, and it uses those to differentiate some symbolic expression.
This makes it easy to get a truncated Laurent series of $1/J$
around $z = 0$:
z; /* first symbol is treated as the main series variable */
sym = [E2, E4, E6];
dsym = [(E2^2 - E4)/12, (E2*E4 - E6)/3, (E2*E6 - E4^2)/2];
taylorcoeff(f,n) = subst(diffop(f, sym, dsym, n)/n!, E4, 0);
/* After having carried out the differentiation,
the coeffs are to be taken as values at z = 0 where E4 = 0 */
J = E4^3 / (E4^3 - E6^2);
Jser = sum(n = 3, 5, taylorcoeff(J, n) * z^n) + O(z^6);
/* We could have started with n = 0, but we already know
that the coeffs for n < 3 are zero */
/* Now let's ask for the series of 1/J in z */
1/Jser
This results in
$$\frac{1}{J}
= \left.\frac{27}{\operatorname{E}_6}\right|_{z=0} z^{-3}
- \left.\frac{27\operatorname{E}_2}{4\operatorname{E}_6}\right|_{z=0} z^{-2}
+ \left.\frac{9\operatorname{E}_2^2}{16\operatorname{E}_6}\right|_{z=0} z^{-1}
+ \operatorname{O}(z^0)$$
The coefficient of $z^{-1}$ is the residue of $1/J$ at $z=0$
with respect to $z$.
The residue that we actually want is the coefficient of
$(\tau - \tau_0)^{-1} = 2\pi\mathrm{i} z^{-1}$.
Therefore
$$\operatorname{res}\left(\frac{1}{J}, \tau_0\right) = \frac{1}{2\pi\mathrm{i}}
\frac{9\operatorname{E}_2(\tau_0)^2}{16\operatorname{E}_6(\tau_0)}$$
As shown in the answer to another
question,
the set of zeros of $J$ is the orbit of $\zeta_6$, or equivalently of $\zeta_3$,
under the action of $\operatorname{SL}(2,\mathbb{Z})$.
Therefore, let us assume that
$$\tau_0 = \frac{a\zeta_3 + b}{c\zeta_3 + d}
\quad\text{with}\quad
\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\operatorname{SL}(2,\mathbb{Z})$$
Applying the transformation identities
$$\begin{align}
\operatorname{E}_2\left(\frac{a\tau + b}{c\tau + d}\right)
&= \frac{6c(c\tau+d)}{\pi\mathrm{i}} + (c\tau+d)^2\operatorname{E}_2(\tau)
\\\operatorname{E}_6\left(\frac{a\tau + b}{c\tau + d}\right)
&= (c\tau+d)^6\operatorname{E}_6(\tau)
\end{align}$$
yields
$$\operatorname{res}\left(\frac{1}{J}, \frac{a\zeta_3 + b}{c\zeta_3 + d}\right)
= \frac{1}{2\pi\mathrm{i}}
\frac{9\left(\frac{6c(c\zeta_3+d)}{\pi\mathrm{i}}
+ (c\zeta_3+d)^2\operatorname{E}_2(\zeta_3)\right)^2}
{16\,(c\zeta_3+d)^6\operatorname{E}_6(\zeta_3)}$$
So all that remains is to find the values of $\operatorname{E}_2$
and $\operatorname{E}_6$ at $\zeta_3$.
For $\operatorname{E}_2$ this is easy, just use the transformation properties:
$$\begin{align}
-\zeta_3^{-1} &= \zeta_3 + 1
\\\therefore\quad
\operatorname{E}_2(\zeta_3)
&= \operatorname{E}_2(\zeta_3 + 1)
= \operatorname{E}_2(-\zeta_3^{-1})
= \frac{6\zeta_3}{\pi\mathrm{i}} + \zeta_3^2\operatorname{E}_2(\zeta_3)
\\\therefore\quad
\operatorname{E}_2(\zeta_3) &= \frac{6\zeta_3}{\pi\mathrm{i}(1 - \zeta_3^2)}
= \frac{2\sqrt{3}}{\pi}
\end{align}$$
For $\operatorname{E}_6$, we do not gain additional information from the
transformation trick. Instead I'll use
the following formula:
$$\sqrt[6]{\operatorname{E}_6}
= {}_2\mathrm{F}_1\left(\frac{1}{12},\frac{7}{12};1;\frac{1}{1 - J}\right)$$
which holds for every $\tau$ that can be reached from $\mathrm{i}\infty$
through a path where the hypergeometric series for the above ${}_2\mathrm{F}_1$
converges, which implies that $|1/(1 - J)|$ must not exceed $1$ anywhere
on that path. Fortunately, this just barely holds for $\tau=\zeta_3$,
and thus we get
$$\sqrt[6]{\operatorname{E}_6(\zeta_3)}
= {}_2\mathrm{F}_1\left(\frac{1}{12},\frac{7}{12};1;1\right)$$
Using the evaluation, reflection and multiplication formulae
$$\begin{align}
{}_2\mathrm{F}_1(u,v;w;1)
&= \frac{\Gamma(w)\,\Gamma(w - u - v)}{\Gamma(w - u)\,\Gamma(w - v)}
\quad\text{for}\quad\{w, w - u - v\}\cap\{0,-1,-2,\ldots\} = \emptyset
\\\Gamma(s)\,\Gamma(1-s) &= \frac{\pi}{\sin(\pi s)}
\quad\text{for}\quad s\in\mathbb{C}\setminus\mathbb{Z}
\\\Gamma(ms) &= m^{ms-\frac{1}{2}}
\frac{\Gamma(s)\,\Gamma\left(s+\frac{1}{m}\right)\cdots
\Gamma\left(s+\frac{m-1}{m}\right)}{(2\pi)^{\frac{m-1}{2}}}
\quad\text{for}\quad m\in\mathbb{N}
\end{align}$$
we get
$$\begin{align}
\sqrt[6]{\operatorname{E}_6(\zeta_3)}
&= \frac{\Gamma\left(\frac{1}{3}\right)}
{\Gamma\left(\frac{5}{12}\right)\Gamma\left(\frac{11}{12}\right)}
= \frac{\sqrt{3}\,\Gamma^3\left(\frac{1}{3}\right)}{2^{3/2}\pi^2}
= \frac{2^{3/2}\pi}{3\,\Gamma^3\left(\frac{2}{3}\right)}
\\\therefore\quad
\operatorname{E}_6(\zeta_3)
&= \frac{3^3\,\Gamma^{18}\left(\frac{1}{3}\right)}{2^9\pi^{12}}
= \frac{2^9\pi^6}{3^6\,\Gamma^{18}\left(\frac{2}{3}\right)}
\end{align}$$
Plugging those values for $\operatorname{E}_2$ and $\operatorname{E}_6$
into the residue formula, we finally get
$$\operatorname{res}\left(\frac{1}{J}, \zeta_3\right)
= -\frac{3^9\,\Gamma^{18}\left(\frac{2}{3}\right)}{2^{12}\pi^9}\mathrm{i}$$
This should match your numeric result. (I have not tested it.)
I leave it to you to polish the residue formula for general $\tau_0$.