Here are some relevant hints including basic complex number arithmetic.
Put $$\sqrt{z} = \exp(1/2\log z)$$
where the logarithm has the branch cut on the positive real axis
(argument from zero to $2\pi$.)
Use a keyhole contour with the slot of the key on the positive real
axis. On the circular part of the contour we have
$1/\sqrt{z}/z^2\in\Theta(R^{-5/2})$ and since $\lim_{R\to\infty} 2\pi
R \times R^{-5/2} = 0$ the contribution from the circular arc is
zero.
This leaves the contribution above and below the positive real axis.
Above the real axis we get
$$\int_0^\infty \frac{1}{\sqrt{x} (x^2+1)} dx$$
with $\sqrt{x}$ being the real square root function.
Below the real axis we have
$$\int_\infty^0
\frac{1}{\exp(1/2\log x + 1/2\times 2\pi i)(x^2+1)} dx$$
which is
$$- e^{-\pi i} \int_0^\infty \frac{1}{\sqrt{x} (x^2+1)} dx$$
with the square root again being the real square root function.
Collecting the two contributions we have
$$(1-e^{-\pi i})
\int_0^\infty \frac{1}{\sqrt{x} (x^2+1)} dx
\\= 2\pi i
\left(\mathrm{Res}\left(\frac{1}{\sqrt{z} (z^2+1)}; z=i\right)
+\mathrm{Res}\left(\frac{1}{\sqrt{z} (z^2+1)}; z=-i\right)\right).$$
This implies that
$$\int_0^\infty \frac{1}{\sqrt{x} (x^2+1)} dx
= \pi i
\left(\frac{1}{\sqrt{i} (+2i)}
+ \frac{1}{\sqrt{-i} (-2i)}\right)
\\ = \pi i
\left(\frac{1}{e^{i\pi/4} (+2i)}
+ \frac{1}{e^{3i\pi/4} (-2i)}\right)
= \pi i e^{-i\pi /4}
\left(\frac{1}{2i} - \frac{1}{2i e^{i\pi/2}}\right)
\\= \pi i e^{-i\pi /4}
\left(- i\frac{1}{2} + \frac{1}{2}\right)
= \frac{\pi}{\sqrt{2}} i e^{-i\pi /4}
\left(- i\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right)
\\ = \frac{\pi}{\sqrt{2}} i e^{-i\pi /4} e^{-i\pi /4}
= \frac{\pi}{\sqrt{2}} i e^{-i\pi /2}
= \frac{\pi}{\sqrt{2}} i (-i) \\
= \frac{\pi}{\sqrt{2}}.$$
Addendum. If we want to be extra careful about it we also have to
check the integral along the miniature circle of radius $\epsilon$
enclosing the origin, which is on the order of
$2\pi\epsilon/\sqrt{\epsilon}= 2\pi\sqrt{\epsilon}\to 0$ as
$\epsilon\to 0.$