Compute $$I=\int_0^{\infty} \frac {1}{x^{1/3}(1+x^2)}dx$$
My attempt:
$$u=x^{1/3}\implies I = 3\int_0^{\infty}\frac {u}{u^6+1}du=\frac 32\int_0^\infty \frac {1}{u^3+1}du=\frac 32 \int_0^\infty \frac {1}{(x+1)(x^2+x+1)}dx\\\implies I=\frac 32 \int_0^{\infty} \frac 1{x+1}-\frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?