Statement: If $ \lambda$ is an eigenvalue of $AB^{-1}$, then $ \lambda$ is an eigenvalue of $ B^{-1}A$ and vice versa.
One way of the proof.
We have $B(B^{-1}A ) B^{-1} = AB^{-1}. $ Assuming $ \lambda$ is an eigenvalue of $AB^{-1}$ then we have, $$\begin{align*} \det(\lambda I - AB^{-1}) &= \det( \lambda I - B( B^{-1}A ) B^{-1} )\\ &= \det( B(\lambda I - B^{-1}A ) B^{-1})\\ &= \det(B) \det\bigl( \lambda I - B^{-1}A \bigr) \det(B^{-1})\\ &= \det(B) \det\bigl( \lambda I - (B^{-1}A )\bigr) \frac{1}{ \det(B) }\\ \ &= \det( \lambda I - B^{-1}A ). \end{align*}$$ It follows that $ \lambda$ is an eigenvalue of $ B^{-1}A.$ The other side of the lemma can also be proved similarly.
Is there another way how to prove the statement?