I think Math-fun's second approach based on changing the order of integration is a good strategy. Appropriate use of substitutions and trig identities along the way clean up a lot of the resulting "mess":
$$\begin{align}
\mathcal{I}
&=\int_{0}^{1}\mathrm{d}y\int_{0}^{1}\mathrm{d}s\,\frac{\arcsin{\left(\sqrt{1-s}\sqrt{y}\right)}}{\left(sy-y+1\right)\sqrt{1-y}}\\
&=\int_{0}^{1}\mathrm{d}y\int_{0}^{1}\mathrm{d}t\,\frac{\arcsin{\left(\sqrt{ty}\right)}}{\left(1-ty\right)\sqrt{1-y}};~~~\small{\left[1-s=t\right]}\\
&=\int_{0}^{1}\mathrm{d}y\int_{0}^{y}\mathrm{d}u\,\frac{\arcsin{\left(\sqrt{u}\right)}}{\left(1-u\right)y\sqrt{1-y}};~~~\small{\left[yt=u\right]}\\
&=\int_{0}^{1}\mathrm{d}u\int_{u}^{1}\mathrm{d}y\,\frac{\arcsin{\left(\sqrt{u}\right)}}{\left(1-u\right)y\sqrt{1-y}}\\
&=\int_{0}^{1}\mathrm{d}u\,\frac{\arcsin{\left(\sqrt{u}\right)}}{1-u}\int_{0}^{\sqrt{1-u}}\frac{2\,\mathrm{d}x}{1-x^2};~~~\small{\left[\sqrt{1-y}=x\right]}\\
&=\int_{0}^{1}\mathrm{d}u\,\frac{2\arcsin{\left(\sqrt{u}\right)}}{1-u}\cdot\operatorname{arctanh}{\left(\sqrt{1-u}\right)}\\
&=\int_{0}^{1}\frac{2\arcsin{\left(\sqrt{1-v}\right)}\operatorname{arctanh}{\left(\sqrt{v}\right)}}{v}\,\mathrm{d}v;~~~\small{\left[1-u=v\right]}\\
&=\int_{0}^{1}\frac{4\arcsin{\left(\sqrt{1-w^2}\right)}\operatorname{arctanh}{\left(w\right)}}{w}\,\mathrm{d}w;~~~\small{\left[\sqrt{v}=w\right]}\\
&=4\int_{0}^{1}\frac{\arccos{\left(w\right)}\operatorname{arctanh}{\left(w\right)}}{w}\,\mathrm{d}w\\
&=4\int_{0}^{1}\frac{\operatorname{Li}{\left(w\right)}-\operatorname{Li}{\left(-w\right)}}{2\sqrt{1-w^2}}\,\mathrm{d}w\\
&=4\,{_4F_3}{\left(\frac12,\frac12,1,1;\frac32,\frac32,\frac32;1\right)}.\\
\end{align}$$
And so we see that the above integral is intimately connected to this fun problem, which has generated so much discussion and so many spin-off questions that it wouldn't make sense for me to try to rehash everything here. And given the participation of this question's author in said discussions, I can't help but wonder if he suspected this integral's closed form value all along. =)