Could somebody give me a numerical value for this integral?
$$I = \int_0^1 \int_0^1 \frac{\arcsin\left(\sqrt{1-s}\sqrt{y}\right)}{\sqrt{1-y} \cdot (sy-y+1)}\,ds\,dy $$
Could somebody give me a numerical value for this integral?
$$I = \int_0^1 \int_0^1 \frac{\arcsin\left(\sqrt{1-s}\sqrt{y}\right)}{\sqrt{1-y} \cdot (sy-y+1)}\,ds\,dy $$
$$I\approx4.49076009892257799033708885767243640685411695804791115741588093621176851...$$