Let $s>1$. Observe that $$\displaystyle \sum_{n\geq 1}\frac{(-1)^n }{n^s}=\frac{1}{2^s}\sum_{n\geq 1}\frac{1}{n^s}-\sum_{n\geq 0}\frac{1}{(2n+1)^s}\tag1$$
and
$$\displaystyle \sum_{n\geq 1}\frac{1}{n^s}=\frac{1}{2^s}\sum_{n\geq 1}\frac{1}{n^s}+\sum_{n\geq 0}\frac{1}{(2n+1)^s}\tag2$$
then $(1)$ + $(2)$ gives
$$\displaystyle \sum_{n\geq 1}\frac{(-1)^n }{n^s}=\left(\frac{1}{2^{s-1}}-1\right)\sum_{n\geq 1}\frac{1}{n^s}=\left(\frac{1}{2^{s-1}}-1\right)\zeta(s)\tag3$$
where $\zeta(\cdot)$ is the Riemann zeta function.
Now differentiating $(3)$ with respect to $s$ gives
$$\displaystyle -\sum_{n\geq 1}\frac{(-1)^n \ln n}{n^s}=\left(-\frac{\ln 2}{2^{s-1}}\right)\zeta(s)+\left(\frac{1}{2^{s-1}}-1\right)\zeta'(s)\tag4$$
and letting $s$ tend to $1^+$, gives the result:
$$\displaystyle \sum_{n\geq 1}\frac{(-1)^n }{n}\ln n=-\frac{\ln^2 2}{2}+\gamma \ln 2\tag5$$
where $\gamma$ is the Euler constant and where, near $s=1^+$, we have used
$$\frac{1}{2^{s-1}}= 1- (s-1)\ln 2+(s-1)^2\frac{\ln^2 2}{2}+\mathcal{O}((s-1)^3)$$
together with the Laurent series expansions $$
\begin{align}
\zeta(s) &=\frac{1}{s-1}+\gamma+\mathcal{O}(s-1)\\\\
\zeta'(s)&=-\frac{1}{(s-1)^2}+\mathcal{O}(1).\end{align}$$