With all of the great comments, one of which suggested that one of us post an answer, I've decided to proceed. So, here we go ...
Let $S$ be the series of interest given by
$$S=\sum_{m=1}^{\infty}\sum_{k=1}^{\infty}\frac{m(-1)^{m+k}\log(m+k)}{(m+k)^3}$$
Now exploiting symmetry, we can write $S$ as
$$S=\frac12 \sum_{m=1}^{\infty}\sum_{k=1}^{\infty}\frac{(-1)^{m+k}\log(m+k)}{(m+k)^2}$$
Next, we make the substutution $k=p-m$ and change the order of summation to reveal
$$\begin{align}
S&=\frac12\sum_{p=2}^{\infty}\sum_{m=1}^{p-1}\frac{(-1)^p \log p}{p^2}\\\\
&=\frac12 \sum_{p=1}^{\infty}\frac{(-1)^p\log p}{p}-\frac12 \sum_{p=1}^{\infty}\frac{(-1)^p\log p}{p^2}\\\\
&=\frac12 \eta'(1)-\frac12 \eta'(2)
\end{align}$$
where $\eta'(z)$ is derivative of the Dirichlet eta function. The Diriclet eta function is related to the Riemann zeta function by the expression
$$\eta(z)=(1-2^{1-z})\zeta(z)$$
The derivative $\eta'(z)$ can be written
$$\eta'(z)=
\begin{cases}
(1-2^{1-z})\zeta'(z)+2^{1-z}\log(2)\zeta(2)&, z>1\\\\
\left(\gamma-\frac12 \log(2)\right)\log(2)&,z=1
\end{cases}$$
Putting it all together gives
$$S=\frac12 \log(2)\left(\gamma-\frac12 \log(2)-\frac{\pi^2}{12}\right)-\frac14 \zeta'(2)$$