Suppose we seek to show that
$$\sum_{k=0}^n {n+k\choose k}(x^{n+1}(1-x)^k+(1-x)^{n+1}x^k) =1.$$
We use an Iverson bracket to control the range of $k$ so we can let it
range from zero to infinity, which is
$$[[0 \le k\le n]]
= \frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{1+v+\cdots+v^n}{v^{k+1}} \; dv
\\ = \frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{v^{n+1}-1}{(v-1)v^{k+1}} \; dv.$$
We evaluate this using the formula for the residue at infinity
$$\mathrm{Res}_{z=\infty} h(z)
= \mathrm{Res}_{z=0}
\left[-\frac{1}{z^2} h\left(\frac{1}{z}\right)\right]$$
which in this case yields (omit the minus sign as the residues sum to
zero)
$$\mathrm{Res}_{v=0}
\frac{1}{v^2} \frac{1/v^{n+1}-1}{(1/v-1) \times 1/v^{k+1}}
= \mathrm{Res}_{v=0}
\frac{1/v^{n+1}-1}{(1-v) \times 1/v^{k}}
\\ = \mathrm{Res}_{v=0}
\left(\frac{v^{k}}{v^{n+1}}\frac{1}{1-v}
-\frac{v^k}{1-v}\right).$$
With the additional assumption that $k \ge 0$ which is the case here
this yields
$$\mathrm{Res}_{v=0} \frac{v^{k}}{v^{n+1}}\frac{1}{1-v}
= \frac{1}{2\pi i}
\int_{|v|=\epsilon} \frac{v^{k}}{v^{n+1}}\frac{1}{1-v} \; dv$$
which could have been obtained by inspection.
This yields for the second component of the sum
$$\frac{1}{2\pi i}
\int_{|v|=\epsilon} \frac{1}{v^{n+1}}\frac{1}{1-v}
\sum_{k\ge 0} {n+k\choose n} (1-x)^{n+1} x^{k} v^k
\; dv
\\ = (1-x)^{n+1}
\frac{1}{2\pi i}
\int_{|v|=\epsilon} \frac{1}{v^{n+1}}\frac{1}{1-v}
\frac{1}{(1-xv)^{n+1}} \; dv.$$
We will evaluate this not by evaluating the residue at zero but the
sum of the negatives of the residues at $v=1$ and $v=1/x$ given that
the residues sum to zero.
For the residue at $v=1$ re-write the integral as follows:
$$-(1-x)^{n+1}
\frac{1}{2\pi i}
\int_{|v|=\epsilon} \frac{1}{v^{n+1}}\frac{1}{v-1}
\frac{1}{(1-xv)^{n+1}} \; dv.$$
The residue at $v=1$ here is
$$-(1-x)^{n+1} \frac{1}{(1-x)^{n+1}} = -1$$
for a contribution of $$1$$ upon negation.
For the residue at $v=1/x$ re-write the integral as follows:
$$\frac{(1-x)^{n+1}}{x^{n+1}}
\frac{1}{2\pi i}
\int_{|v|=\epsilon} \frac{1}{v^{n+1}}\frac{1}{1-v}
\frac{1}{(1/x-v)^{n+1}} \; dv
\\ = (-1)^{n+1} \frac{(1-x)^{n+1}}{x^{n+1}}
\frac{1}{2\pi i}
\int_{|v|=\epsilon} \frac{1}{v^{n+1}}\frac{1}{1-v}
\frac{1}{(v-1/x)^{n+1}} \; dv.$$
Use Leibniz' rule to differentiate the two terms in $v$ to get
$$\frac{1}{n!}\left( \frac{1}{v^{n+1}}\frac{1}{1-v} \right)^{(n)} =
\frac{1}{n!} \sum_{k=0}^n {n\choose k}
\frac{(-1)^k (n+k)!}{n! \times v^{n+1+k}}
\frac{(n-k)!}{(1-v)^{n-k+1}}.$$
Evaluate this at $v=1/x$ including the factor in front to get for the
residue
$$(-1)^{n+1} \frac{(1-x)^{n+1}}{x^{n+1}}
\frac{1}{n!} \sum_{k=0}^n {n\choose k}
\frac{(-1)^k (n+k)!}{n! \times (1/x)^{n+1+k}}
\frac{(n-k)!}{(1-1/x)^{n-k+1}}
\\ = (-1)^{n+1} \frac{(1-x)^{n+1}}{x^{n+1}}
\sum_{k=0}^n
\frac{(-1)^k (n+k)!}{n! \times k! \times (1/x)^{n+1+k}}
\frac{1}{(1-1/x)^{n-k+1}}
\\ = (-1)^{n+1} (1-x)^{n+1}
\sum_{k=0}^n {n+k\choose k}
\frac{(-1)^k}{(1/x)^{k}}
\frac{1}{(x-1)^{n-k+1}/x^{n-k+1}}
\\ = \sum_{k=0}^n {n+k\choose k}
\frac{(-1)^k}{(1/x)^{k}}
\frac{1}{(x-1)^{-k}/x^{n-k+1}}
\\ = x^{n+1} \sum_{k=0}^n {n+k\choose k} (1-x)^k.$$
Upon negation this becomes the negative of the first component of the
sum. Hence adding the three pieces (first component, one, negative of
first component) we obtain a sum of
$$1.$$
Remark. If we want to do this properly we also need to verify that
the residue at infinity of the integral in $v$ is zero.
In the present case this becomes
$$- \mathrm{Res}_{v=0}
\frac{1}{v^2}
\frac{1}{(1/v)^{n+1}}\frac{1}{1-1/v}
\frac{1}{(1-x/v)^{n+1}}
\\ = - \mathrm{Res}_{v=0}
\frac{1}{v^2}
\frac{v^{n+1} \times v^{n+1}}{1-1/v}
\frac{1}{(v-x)^{n+1}}
\\ = - \mathrm{Res}_{v=0}
\frac{1}{v}
\frac{v^{2n+2}}{v-1}
\frac{1}{(v-x)^{n+1}}
\\ = - \mathrm{Res}_{v=0}
\frac{v^{2n+1}}{v-1}
\frac{1}{(v-x)^{n+1}}$$
which is zero by inspection.