$$\int_{0}^{\sqrt{n}}\left(1-\frac{x^2}{n}\right)^n\,dx \stackrel{x\mapsto\sqrt{z}}{=}\frac{1}{2}\int_{0}^{n}z^{-1/2}\left(1-\frac{z}{n}\right)^n\,dz \stackrel{z\mapsto nu}{=}\frac{\sqrt{n}}{2}\int_{0}^{1} u^{-1/2}(1-u)^n\,du $$
The last integral is a value of Euler's Beta function. By integration by parts we get:
$$ \frac{\sqrt{n}}{2}\cdot \frac{\Gamma\left(\frac{1}{2}\right)\,\Gamma(n+1)}{\Gamma\left(n+\frac{3}{2}\right)} $$
and by Gautschi's inequality we have:
$$ \lim_{n\to +\infty}\frac{\sqrt{n}}{2}\cdot \frac{\Gamma\left(\frac{1}{2}\right)\,\Gamma(n+1)}{\Gamma\left(n+\frac{3}{2}\right)} = \frac{1}{2}\,\Gamma\left(\frac{1}{2}\right) = \color{blue}{\frac{1}{2}\sqrt{\pi}}.$$
With a more elementary approach, we may just approximate $\left(1-\frac{x^2}{n}\right)^n$ over $(0,\sqrt{n})$ with $\left(e^{-x^2/n}\right)^n = e^{-x^2}$ in the spirit of Laplace's method. Since over $(0,1)$ we have $0\leq e^{-x^2}-(1-x^2)\leq \frac{x^3}{e}$ and $0<a<b$ grants $b^n-a^n\leq n(b-a)b^{n-1}$,
$$ I_n = \int_{0}^{\sqrt{n}}\left(1-\frac{x^2}{n}\right)^n\,dx = \int_{0}^{\sqrt{n}}e^{-x^2}\,dx - \frac{C}{n^2}\int_{0}^{\sqrt{n}}x^3 e^{-x^2}\,dx $$
with $C\in[0,1]$. On the other hand
$$ \int_{\sqrt{n}}^{+\infty}e^{-x^2}\,dx = \int_{n}^{+\infty}\frac{e^{-z}}{2\sqrt{z}}\,dz\leq \frac{1}{2\sqrt{n}}\int_{n}^{+\infty}e^{-z}\,dz = \frac{1}{2e^n\sqrt{n}}$$
hence:
$$ I_n = O\left(\frac{1}{n^2}\right) + \int_{0}^{+\infty}e^{-x^2}\,dx = \color{blue}{\frac{\sqrt{\pi}}{2}}+O\left(\frac{1}{n^2}\right).$$